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Abstract

An extensive study of the micromechanics aspects and size effects associated with
strain softening damage due to distributed cracking in brittle heterogeneous materials
such as concrete, rocks and ceramics has been carried out and presented in a sequence
of publications. The results may be grouped in five categories: (i) Size Effects. (2)
Micromechanics Aspects, (3) Nonlocal Continuum Models, (4) Localization Instabili-
ties, (5) Thermodynamic Analysis of Stable Path, and (6) Numerical Implementation
of Localization Limiters.

The law governing the size effect due to localization of strain softening into a finite
size fracture process zone has been formulated, experimentally verified and calibrated.
Knowledge of the size effect law has led to a method of determining nonlinear fracture
properties on the basis of maximum loads of geometrically similar specimens of different
sizes. The concept of a brittleness number characterizing the proximity of response
of any structure to linear elastic fracture mechanics has been developed. Extensive
experiments have been conducted on concrete, rock and ceramics. The size effect - .> -'
analysis has been extended to variable temperature and humidity conditions, as well as
to fatigue fracture. Application to high strength concrete indicated that the fracture
energy does not increases as much as strength and the brittleness of high strength
concrete structures is higher than that of normal structures.

In the study of micromechanics, considerable effort has been devoted to random
particle simulation of cracking and fracture in aggregate composites. A method to
randomly simulate such microstructures has been formulated and the knowledge of
the size effect has been used to determine fracture characteristics of random particle
systems. Furthermore, analytical solutions of simplified situations with regular crack
arrays have been carried out to gain insight into the nonlocal aspect of the macroscopic
smoothing continuum and into the shape of the post-peak stress-displacement softening
curve. For the description of the stress-strain relations for the fracture process zone.
a microplane model in which the constitutive properties are described independently
on planes of various orientations in the material has been developed and shown to be
efficient and represent well available triaxial test data. Microcrack distributions in the
fracture process zone have been observed microscopically, slicing specimens in which
microcracks were propped open by a resin with fluorescent dye.

Nonlocal continuum models based on degradation of stiffness or degradation of
the yield limit have been formulated and shown to allow effective solution of large
finite element systems. The key property of these models is that nonlocal are only
those aspects which are associated with strain softening while the elastic response is
treated as local. Stability of the nonlocal models has also been analyzed. A method
for measurement of the characteristic lengths of the nonlocal continuum model has
been developed. As another aspect of micromechanics, softening instabilities have
been solved analytically for localization into a planar band within a layer of finite
thickness and localization into ellipsoidal regions. Conditions for instability as well
as bifurcation on a stable path have been given. The conditions for stability and
path bifurcation in a material with damaen bwx been formulated on the basis of
thermodynamic considerations.
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INTRODUCTION

The salient property of failure of brittle aggregate materials such as concrete, rocks and

ceramic composites is the existence of distributed cracking and damage. Fracture is obtained

through the localization of cracking and is characterized by the presence of a microcracking

zone in front of the fracture tip as well as bridginq qtresses behind it. The process of

localization of cracking or damage leads to size effects which are intermediate between the

size effects in the failures without localization, typified by plastic failures, and failures with

localization of damage into a point, typified by linear elastic fracture mechanics. Due to

the existence of distributed cracking, the classical continuum modeling of materials becomes

inadequate, and some form of a nonlocal formulation is required in order to correctly capture

the size effect and localization phenomena.

A three-year research program dealing with these problems has just been completed at

Northwestern University. The research results have been reported in full detail in a number

of papers (see the list in Appendix). The main results are briefly summarized in the present

report, and the principal publications are attached as Appendices. The presentation of

the results is grouped into six categories: (1) Size Effects, (2) Micromechanics Studies. (3)

Nonlocal Continuum Approach, (4) Localization Instabilities, (5) Thermodynamic Analysis

of Stable Path, and (6) Numerical and Analytical Studies of Localization.

1. SIZE EFFECTS

First, we will describe the results on the size effect which have been obtained on the basis

of experiments, coupled with dimensional analysis, similitude arguments and asymptotic

considerations. Discussion of the micromechanics aspects will be postponed to Section 2.

The size effect is the salient aspect of fracture mechanics. While all strength-based

theories of failure, e.g., plasticity, exhibit no size effect, the classical linear elastic fracture

mechanics exhibits a very strong size effect in which the nominal stress and failure (load
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divided by dimension and thickness) is proportional to the inverse square root of the size.

In brittle heterogeneous materials such as concrete, rocks or ceramics, the size effect is

transitional between these two extremes. It has been shown that from the shape of the

transition curve one can determine all the basic nonlinear fracture characteristics.

The principal results on the size effect are presented in Appendices Al and A2. A large

series of size effect tests of geometrically similar fracture specimens of various types has

been conducted and analyzed. With reference to size effect, a new, unambiguous definitinn

of the fracture energy of a material with a large fracture process zone has been conceived:

The fracture energy is the specific energy required for crack growth in an infinitely large

specimen.

Theoretically, this definition eliminates the effect of specimen size as well as shape and

the type of loading on the fracture energy value since it can be demonstrated by asymptotic

analysis that the stress field surrounding the fracture process zone in an infinitely large

specimen is always the same, except for a multiplicative factor. The problem is, therefore.,

to identify the correct size effect law to be used for the extrapolation to infinite size. It

has been shown that a rather simple law (Eq. 2 in Al; and 6.2), proposed by Bazant, is

applicable for this purpose as an approximation. It has been experimentally verified that

very different types of specimens including three-point bend fracture specimens, edge-notched

tension specimens, and eccentric compression specimens indeed yield approximately the same

fracture energy values.

A method to calculate the R-curves (resistance curves) has been formulated, and evalu-

ation of the aformentioned tests showed that the R-curves for different specimen shapes are

rather different although they have the same final asymptotic value (6.7 in Al).

It was further shown that, on the basis of the size-effect law, one can define a brittleness

number (Eq. 8 and 10 in Al), which indicates how close the behavior of a specimen or

structure of any geometry is to linear elastic fracture mechanics or to plastic limit analysis.

Appendix A2 describes determination of all the basic nonlinear fracture parameters on

the basis of the size effect. Eq. 4 in A2 represents a size effect law formulated in terms of
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the fracture energy and the effective length of the fracture process zone. What makes this

formulation possible is the introduction of the intrinsic (shape-independent) dimension of

the structure and the intrinsic nominal stress at maximum load (Eq. 6 in A2). Based on

this more fundamental form of the size effect law, the brittleness number of a structure can

be defined as a ratio of the intrinsic size to the effective length of the fracture process zone

(Eq. 11 in A2).

Furthermore, the R-curve can be expressed in terms of the fracture parameters as given

in Eq. 22 of A2. This expression for the R-curve has becn used to calculate load-deflection

curves of various types of specimens. Comparisons with experimental results have confirmed

a previous theoretical indication that the master R-curve obtained from the size effect law

is applicable only in the hardening regime, i.e., as long as the load is increasing. For the

post-peak regime, it has been found that the R-curve must be assumed to be horizontal,

with a value equal to that at the peak load. This behavior is due to the fact that in the

post-peak regime the fracture process zone stops growing, separates from the notch tip and

travels forward at roughly constant size.

Appendix Al also gives experimental verification of the applicability of the size effect law

to ceramics, in particular silicon carbide and slip-cast fused silica. In addition, Appendix A2

also contains a concise summary of the entire theory.

Appendix A3 exploits the size effect law for determining the dependence of the fracture

properties of concrete on temperature and for water content of conerete specimens. It is found

that the temperature dependence of fracture energy roughly follows a simple formula (Eq.

5 in A3) which has been derived on the basis of the activation energy theory for molecular

bonds. The activation energy has been found to be strongly dependent on the moisture

content. Experiments showed the fracture energy of dried concrete to be much less than

that of wet concrete, especially at high temperatures.

Appendix A4 extends the size effect law to fatigue fracture. Crack growth in geometrically

similar notched concrete specimens of various sizes, caused by load repetitions. has been

measured by means of the compliance method. It was found that Paris law is valid only
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for specimens of one size or asymptotically for very large specimens, but is invalid when

specimens of different sizes are compared. However, a generalized form of Paris law, which

is combined with a size effect law known from monotonic fracture, was shown to agree with

test data quite well. The size-adjusted Paris law - a basic new result - gives the crack length

increment per cycle as a power function of the amplifude of a size-adjusted stress intensity

factor amplitude. The size adjustment is based on the 1,rittleness number of the structure.

Appendix A5 presents application of the size , t', - method for the determination of

fracture characteristics of high strength concrete. I,,ts of geometrically similar fracture

specimens of different sizes revealed that the fracture properties of high strength concrete

are rather different from those of normal concretes. Increase of the concrete strength by

the factor of 2.6 was found to increase fracture toughness by only 25 percent, and at the

same time to decrease the effective fracture process zone length by about 60 percent. This

causes that the brittleness number of a given structure made of high-strength concrete is

more than twice as large as that of the same structure made of normal concrete. This new

result represents an adverse feature which will need to be coped with in design.

Appendix A6 presents an application of the size effect method to the measurement of

fracture properties in mode III fracture (shear fracture). The test specimens were geometri-

cally similar cylinders with a circumferential notch, loaded in torsion. The mode III f'actuire

energy was found to be about three-times larger than the mode I (opening mode) fracture

energy, provided the normal force resultant across the fracture plane is zero- otherwise, the

fracture energy is very sensitive to the normal force value.

Finally, appendix A7 presents in simple terms the consequences of the size effect for the

design codes. The results of this project have shown that the formulas for brittle failures of

reinforced concrete structures in the existing design codes, which are based on plastic limit

analysis, need to be revised by incorporation of the size effect, which is ignored at present.

Experiments in which the diagonal shear failure loads of beams were measured on specimens

of different sizes, (with the size range 1:16) have confirmed that the size effect is indeed

significant from the designer's viewpoint.
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2. MICROMECHANICS STUDIES

After discussing the results obtained on the basis of experiments, dimensional analysts,

and asymptotic considerations, we will now describe the results obtained by micromechanics

analysis.

Although some researchers have attempted to analyze the mechanics of fracture by sub-

dividing the aggregate pieces as well as the mortar or cement matrix into many finite ele-

ments, in general this approach is only of limited usefulness due to preposterous demands

for computer time and storage. Much more effective, and for most purposes adequate, is a

simplified model of the microstructure in which the large aggregate pieces are considered as

rigid, randomly arranged particles with axial interactions which allow for elastic response

and interparticle cracking (softening). Such a model (which represents an adaptation of a

similar earlier model of Cundall for sands) is presented in Appendix B1.

A method of random computer generation of a particle system meeting the prescribed

particle size distribution has been developed; see the simulations in 6.2 of B1. The particles

are assumed to be elastic, and the interparticle contact layers of the matrix are described

by a softening stress-strain relation corresponding to a prescribed microscopic interparticle

fracture energy. Both two and three-dimensional versions of the model are easy to program.

but the latter poses at present extremely large demands for computer time. The model is

shown to realistically simulate the spread of cracking and its localization.

With regard to the size effect, it has been shown that the random particle model correctly

exhibits the transitional size effect described by the size effect law and agrees quite well with

various experimental data. In this regard it should be noted that continuum models of the

classical, local type are inherently incapable of describing the size effect (this is of course

also true of finite element models based on a local continuum). Direct evaluation of fracture

energy for the material represented by random particle models on the basis of interparticle

forces is in general a difficult proposition since it is not clear which interparticle force work

should be counted. However it is shown that the size effect method can be used to determine

the fracture energy and the effective process zone lengths of the material represented by the
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random particle system quite well, and unambiguously.

Another aspect of the distributed cracking in materials such as concrete is examined in

Appendix B2, in which strain-softening damage due to distributed cracking is modeled by an

elastic continuum with a quasi-periodic array of cracks of regular spacing but varying sizes.

The strain due to cracking as well as the corresponding compliance are calculated analytically.

The cracked material is homogenized in such a manner that the microscopic continuum

strains satisfy exactly the condition of compatibility with the actual strains due to cracks.

and the microscopic continuum stress satisfies exactly the condition of work equivalence with

the actual stresses in the cracked material. The results show that. contrary to the existing

theories, the damage variable used in continuum damage mechanics should be nonlocal, while

the elastic part of the response should be local. The mathematical analysis also indicates

that, for this particular crack system, the nonlocal continuum damage should be considered

as a function of the spatial average of the cracking strain rather than its local value. This

partially confirms the nonlocal damage concept.

The fracture energy represents the complete area and the stress-displacement curve char-

acterizing the fracture process zone. This curve is very difficult to measure, only indirect

inferences can be made. Therefore, determination of the shape of the stress displacement

curve in the post-peak softening range needs to be aided by micromechanics analysis. Such

an analysis is presented in Appendix B3, in which again the fracture process zone is assumed

to consist of a two-dimensional array of circular cracks, in the initial stage, or circular lig-

aments, in the terminal stage of fracture. For both cases analytical solutions of the stress

displacement curve are obtained. The solutions are approximate but asymptotically exact

for very small cracks or very small ligaments. As an interesting result, the stress displace-

ment curve in the post-peak range is found to exhibit snapback instability characterized by

a maximum possible displacement value. However, it is observed that the snapback might

be characteristic only of the elastic-fracture type of response, and might be suppressed by

frictional phenomena or the effect of inhomogeneities, which could not be considered in the

analytical solution.
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The interactions between the sites of concentrated inelastic deformations in the mi-

crostructure are basically of two types:

(1) interactions at distance, and

(2) interactions between different orientations of the planes on which inelastic phenomena

take place.

The first type of interactions can be approximately characterized, on the macro-level,

by nonlocal continuum properties. If the continuum includes the nonlocal properties, the

stress-strain relation for the fracture process zone needs to reflect only interactions between

different orientations. This type of interactions is effectively described by the microplane

model, presented in Appendix B4.

This model, which essentially represents generalization and modification of the classical

slip theory of G.I. Taylor for plasticity of polycrystaline metals, can describe not only ten-

sile cracking but also the general nonlinear triaxial response in compression and shear. as

demonstrated by comparisons with experiments in B-4. In this approach, the constitutive

properties are characterized separately on planes of various orientations within the material.

called the microplanes (the original term in plasticity was "slip planes"). The advantage is

that on the microplanes there are only two stress and strain components and no tensorial

invariance requirements need to be observed. These requirements are satisfied automatically

by integration over all spatial directions. The microplane strains are assumed to be the

results components of the macroscopic strain tensor. The central assumption is that on the

microplane level the stress-strain diagrams for monotonic loading are path independent and

that all the path dependence on the macro level is due to unloading, which occurs selectively

on microplanes of different orientations. The microplane theory yie'ds the stiffness or com-

pliance matrix of the material, which in general can be non-symmetric, due to frictional and

dilatancy phenomena. Compared to previous macroscopic phenomenologic tensorial models,

the microplane model developed involves fewer free material parameters and can be more

easily adopted to tests triaxial test results. It has been shown that the model can represent

the existing triaxial test data as well as tensile fracture data very well; see Appendix B5.
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The microplane model requires a relatively large number of computations to obtain the

stress tensor from the given strain tensor; one trades high computer time requirements for

conceptual simplicity and versatility. However, with rapid progress in computer capabilities,

these requirements are becoming quite manageable.

To obtain a more realistic picture of microcracking in the fracture process zone, and its

evolution during the ioading process, microscopic observations of cracks have been conducted.

There have been two basic objectives:

(1) To observe open microcracks as they exist under the load in the post-peak softening

regime, and

(2) To observe microcracks inside the specimen, not on its surface.

After the test, when the specimen is unloaded, most microcracks close. Consequently,

they cannot be easily seen, and their previous width under load cannot be determined. These

were serious limitations of all previous studies. Furthermore, microcracks have customarily

been observed on the specimen surface. But it is likely that the crack pattern on the surface is

quite different from that in the interior. Probably, the fracture process zone in the specimen

interior (e.g., in the middle of specimen thickness) is wider than on the surface because

of more restraints against localization. The surface layer of concrete inevitably contains a

lower proportion of aggregate than the specimen interior, and a higher percentage of mortar:

hence it is more homogeneous, which should promote localization. Another difference is due

to the effect of Poisson ratio. In the specimen interior, there are transverse normal stresses,

but not on the surface. This causes a reduced overall stiffness for the surface layer, and

also produces a complicated three-dimensional stress field, which in linear elastic fracture

mechanics is manifested by a three-dimensional singularity (whose exponent differs from 1/2

if the crack edge is normal to the surface).

To circumvent these limitations of previous studies, the following procedure has been

conceived:

(1) Impregnate the fracture specimens under load. in a deformed post-peak state, using a

resin with a fluorescent dye,
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(2) Harden the resin by microwave heating while the specimen is under load (and thus the

cracks remain open)

(3) Unload the specimen, cut it, polish the surface of the cut, and observe the cracks filled

by hardened fluorescent resin under a microscope.

The experimental procedure, however, has turned out to be extremely difficult, tedious

and therefore costly. Due to funding limitations, this part of experimental work could not

yet be completed. Numerous types of specimens and methods of impregnation under load

have been tried. During the last of year of investigation a method which appears feasible

has finally been devised. The specimens are small compact tension specimens, of side 2 in.,

loaded by a wedge. All the wedge assembly must be made of a ceramic so as not to interfere

with the microwaves. The wedge system makes it possible to block the wedge and thus

keep the specimen deformed (and the microcracks open) while the specimen is moved to

the impregnation chamber. In the impregnation chamber, which was built to this purpose,

the specimen is first subjected to vacuum, and then to high pressure, while submerged in

a bath of low viscosity polymer. In this manner it has already been possible to impregnate

specimens successfully (an important point, difficult to achieve, is to impregnate not only

those cracks that are connected to the surface, but also isolated microcracks, with no conduit

to the surface - obviously the resin must pass through the fine pores of concrete). The method

now appears to work but, due to its time-consuming nature and high cost, proceeds slowly.

Fig. I shows the samples of some crack patterns observed in this manner, but no conclusions

can yet be drawn from the limited data obtained so far.

3. NONLOCAL CONTINUUM APPROACH

It has previously been amply demonstrated that the classical, local continuum formula-

tions, as well as their finite elemcnt implementations, cannot represent the transitional size

effect observed in concrete-like materials. The reason is that, in local models, the strain

softening always localizes to a region of zero volume, while in reality the size of this region,

10



representing the fracture process zone, is finite. The continuum model must include a math-

ematical device which limits localization to a zone of a certain finite, minimum size. Such a

localization limiter is automatically achieved by nonlocal continuum.

Appendix C1 presents a rather effective and general nonlocal continuum model which can

be implemented in large finite element programs. The model has been shown to avoid prob-

lems of convergence at mesh refinement and spurious mesh sensitivity, which are intractable

with the classical continuum approach. The model is a generalization of plasticity, in which

strain softening is characterized by degradation of the yield limit.

The key idea is to apply the nonlocal concept only to those parameters which cause the

softening or degradation while keeping the total strains local. Compared to the previously

advanced fully nonlocal (imbricate) continuum formulation, the new approach has advan-

tage that the stresses are subjected to the standard differential equations of equilibrium and

standard boundary or interface conditions, while in previous nonlocal formulations these

equations were of higher order and involved additional terms. Two-dimensional finite ele-

ment solutions of problems with several thousand degrees of freedom have been presented,

documenting convergence and efficacy of the nonlocal numerical model.

Another type of nonlocal model in which strain softening is due to degradation of stiffness

rather than degradation of the yield limit is presented in Appendix C2. This approach is more

realistic for concrete, but does not have the advantage that the finite element program can

be easily obtained by adapting a finite element program for plasticity, as in the previous case.

The model in Appendix C2 generalizes the classical smeared cracking model for concrete,

which has previously been shown to exhibit spurious mesh sensitivity. The crack band

model for smeared cracking, developed previously, circumvents these deficiencies but is not

completely general and can exhibit shear locking and directional mesh bias.

In Appendix C2 it is shown that all these problems can be avoided by a nonlocal gen-

eralization, in which the damage that characterizes strain softening is considered to be a

function of the spatial average of the positive part or the maximum principal strain. Two

alternatives of the model are presented: (1) Smeared cracking whose direction is fixed when
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the cracks start to form, and (2) Smeared cracking whose orientation rotates with the maxi-

mum principal strain. Furthermore, fracture tests on specimens of various sizes are analyzed

by finite elements. It is shown that the model correctly reproduces the experimentally ob-

served size effect and agrees with the size effect law. Furthermore, orthogonal and slanted

meshes are shown to yield, for the same specimen, approximately the same cracking zones

and propagation directions. This confirms that mesh bias, which plagued previous models,

is avoided.

A theoretically more consistent and fundamental approach to the degradation of stiffness

of the material is the continuum damage theory, originated by the works of Kachanov. Again,

this theory is incapable of representing the transitional size effect observed in concrete-like

materials, and its finite element representations exhibit spurious mesh sensitivity due to

unlimited localization and incorrect convergence when the mesh is refined. A nonlocal version

of the continuum damage theory, which avoids all these problems, is presented in Appendix

C3. The central idea is again to subject to nonlocal treatment only those variables that

control strain softening, and to treat the elastic part of response as local. In the continuum

damage theory, the only required modification is to replace the usual local damage energy

release rate with its spatial average over the representative volume of the material whose size

is a characteristic of the material (and roughly coincides with the width of the fracture process

zone). Avoidance of spurious mesh sensitivity and proper convergence are demonstrated by

numerical examples, including static strain softening in a bar, longitudinal wave propagation

in a strain softening material, and static layered finite element analysis of a beam.

The nonlocal models presented in Appendices C1-C3 are relatively simple but not com-

pletely realistic for concrete and similar materials, especially in the case of nonlinear triaxial

behavior. A more realistic model can be achieved by a nonlocal generalization of the mi-

croplane model, as presented in Appendix C4. The nonlocal concept is again applied only

to those microplane strain components that are associated with strain softening, and not to

those representing the elastic part of response. An effective numerical algorithm permitting

large loading steps is developed, applying the idea of exonential algorithms previously formu-
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lated for creep. Problems due to nonsymetry of the tangential stiffness matrix are avoided

by using the initial elastic stiffness matrix in the incremental force displacement relations.

Numerical finite element results with the nonlocal microplane model demonstrate a correct

transitional size effect as observed in concrete and approximately described by the size effect

law.

Introduction of the nonlocal damage formulation requires answering certain fundamental

questions with regard to localization instabilities. These questions are addressed in Appendix

C5. It is shown that the energy dissipation and damage cannot localize into regions of

vanishing volume. The solution of the static strain localization instability in one dimension

is reduced to an integral equation constrained by inequalities. It is shown from this equation

that localization is controlled by the characteristic length of the material introduced in the

spatial averaging rule. The calculated static stability limits are close to those obtained in

the previous nonlocal studies, as well as to those obtained by the crack band model in

which the continuum is treated as local but the minimum size of the strain softening region

is prescribed as a localization limiter. Furthermore, the rate of convergence of static finite

element solutions with nonlocal damage is studied and is found to be of a power type, almost

quadratic. A smooth weight function of bell shape is found to yield an averaging operator

that gives superior convergence.

The basic material property that characterizes the nonlocal aspects in models of all types

is the characteristic length of the material. This length governs the minimum possible width

of a zone of strain softening damage or, from another viewpoint, the minimum possible spac-

ing of line cracks in discrete fracture models. A method of experimental determination of the

characteristic length is presented in Appendix C6. The basic idea is to compare the response

of two types of specimens, one in which the tensile softening damage remains distributed

and one in which it localizes. The latter type of specimen is an edge-notched tensile fracture

specimen, and the former type of specimen is of the same shape but without notches. Lo-

calization of strain softening damage is prevented by gluing to the specimen surface a layer

of parallel thin steel bars and by using a cross-section of a minimum possible thickness that
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can be cast with a given aggregate. The characteristic length is obtained as the ratio of

the fracture energy (the energy dissipated per unit area) to the energy dissipated per unit

volume. Evaluation of these energies from the tests of concrete indicated the characteristic

length to be about 2.7 times the maximum aggregate size. However, this ratio will no doubt

depend on the properties of the matrix and the interfaces, granulometry and other factors.

4. LOCALIZATION INSTABILITIES

Fracture of brittle heterogeneous materials that undergo cracking may be regarded as a

process of localization of damage or cracking into a small zone, called the fracture process

zone. The minimum possible size of the zone can be determined by stability analysis of

localization. Illuminating in this regard are the solutions of some simple prototype situations

such as localization of a field of homogeneous strain into a planar band of localized damage

or into ellipsoidal regions. Analytical solutions to such problems are presented in Appendices

D1-D3. These solutions describe vital aspects of the micromechanics of damage propagation.

In Appendix D1, the continuum is for the sake of simplicity considered as local but

localization of strain softening into a region of vanishing value is precluded by requiring that

the softening region, assumed to be in a state of homogeneous strain, must have a certain

minimum thickness that is a material property, related to the characteristic length. Exact

conditions of stability of an initially uniform strain field against localization are obtained for

the case of an infinite layer in which the strain localizes into an infinite band. This solution

generalizes a previous solution of Rudnicki and Rice, who treated localization into a band in

an infinite space rather than in a layer of finite thickness. Consideration of a finite thickness

is necessary for bringing to light the size effects. The localization problem is solved first

for small strain. Then a linearized incremental solution is obtained taking into account the

geometrical nonlinearity of strain. The stability condition (Eq. 13 in D1) is shown to depend

on the ratio of the layer thickness to the softening band thickness; hence the size effect. It is

found that if this ratio is not too large compared to 1, then the state of homogeneous strain

may be stable well into the softening range.
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Extending the study of localization in bands, Appendix D2 presents exact solutions for

localization of strain into an ellipsoidal region contained within an infinite solid. The solution

exploits Eshelby's theorem for eigenstrains in elliptical inclusions in an infinite elastic solid.

The special cases of localization of strain into a spherical region in three dimensions and into a

circular region in two dimensions are solved for finite bodies - spheres in three dimensions and

circles in two dimensions. The solutions show that even if the body is infinite, the localization

instability cannot occur at the start of strain softening, i.e., at the state corresponding to

the peak of the stress strain diagram, but only later, when there is a finite negative strain

softening slope. If the size of the body relative to the size of the softening region is decreased

and the boundary is restrained, homogeneous strain softening remains stable into a larger

strain. It is also found that, generally, localizations into elongated ellipsoidal region occur

earlier, and the body in fact prefers to localize its strain into an infinite band. However.

localization in a band is possible only in infinite bodies. For a finite body, it is not possible

to satisfy the boundary conditions where the localization band runs into the boundary. In

such a case ellipsoidal localizations with an ellipsoidal region that is much smaller than the

dimension of the body represent a possible solution which approximately satisfies all the

boundary conditions because stress disturbances decay exponentially with a distance from

the ellipsoid.

The solutions to the localization instabilities can be used as checks for finite element

programs for strain softening.

The localization solutions in Appendix D2 are limited to isotropic material models. Ap-

pendix D3 extends the analytical solutions to more complex constitutive laws, particularly

to von Mises and Drucker-Prager plasticity with a degrading yield limit. It is shown how

the conditions of onset of localization instability depend on the aspect ratios of the ellipsoid,

and on the material properties, especially the friction angle and the dilatancy ratio. It is

also shown that violation of normality promotes localization.

The solutions in Appendices Dl-D3 deal only with localization instabilities but not with

localization that happens as a bifurcation along a stable equilibrium path. That problem is
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treated separately. It is shown that the bifurcation occurs as soon as the tangential

moduli matrix becomes singular - a condition that coincides with Hill's classical bifurcation

condition for localization into an infinite layer. It is shown that the bifurcation is normally of

Shanley type, occurring in absence of neutral equilibrium while the controlled displacements

at infinity increase. During a loading process in which the displacement increase is controlled

at infinity, this type of bifurcation precedes the loss of stability of equilibrium due to an

ellipsoidal localization mode. An exception, however, is the case when the tangential moduli

change suddenly (which can happen, e.g., when the slope of the stress-strain diagram is

discontinuous or when temperature is increased).

5. THERMODYNAMIC ANALYSIS OF STABLE PATH

In the analysis of static propagation of crack systems of damage zones in structures, one

typically encounters equilibrium paths with multiple bifurcations and loss of uniqueness.

Among the various possible post-bifurcating path, it is by no means guaranteed that the

commonly used solution algorithms in finite element programs yield the correct path that

actually occur. To obtain the correct solution, a thermodynamically based stability analysis

of stable path is necessary. Such a theory is presented in Appendix El. Stability of inelastic

structures is analyzed in general on the basis of the second law of thermodynamics, and

criteria for stable states as well as stable path are given. Novel results are the criteria in

Eqs. 11-14 of El, pertaining to the conditions or controlled displacements of controlled load

at isothermal or isentropic conditions. These criteria reduce the stability analysis as well as

the determination of the correct bifurcation path to the analysis of positive definiteness of

the surface of the internally produced entropy increment (see Eq. 4 and 7 in Appendix El).

The conditions for stable path have been applied to determination of the evolution of

a system of interacting cracks. There are many problems where all the cracks in a crack

system can grow simultaneously, or one grows preferentially as the others close. The latter

behavior is an aspect of localization within the crack system. The conditions under which

such localizations of crack growth into a single crack happen in some typical simple crack

systems have been formulated in Appendix El.
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6. NUMERICAL AND ANALYTICAL STUDIES OF LOCALIZATION

Localization has been studied in the setting of viscoplastic materials by both analytical

and numerical methods. The major findings of this study are:

1. The size of the localization band depends on the imperfection in viscoplastic materials

(Appendix Fl).

2. The size of the localization band in material models with localization limiters of gra-

dient or nonlocal type depends on the parameter governing the higher-order term or

the size of the nonlocal domain, respectively.

3. Finite element solutions with constant strain elements in which the imperfection is

introduced by weakening one element provide unstable (and hence physically unattain-

able) solutions (Appendix F2).

4. A spectral overlay method has been developed wherein the region near a localization

zone is treated by a spectral method, which provides the resolution needed to study

the structure of the strain field in multi-dimensional localization (Appendix F3).

The fact that the localization band is scaled by the size of the imperfection is particularly

interesting and significant since it indicates that even when a constitutive equation does not

possess an inherent length scale, in application to physical problems, a length scale is intro-

duced by the length scale of the imperfections. This also is in agreement with experiments

which usually exhibit significant scatter in the size and structure of localization zones.

The new numerical method is based on the spectral interpolant, but in contrast to the

spectral element method described, the finite element interpolants are not modified in this

scheme. Instead, the spectral approximation is superimposed on the finite element ap-

proximation over a spectral patch which is placed over the region of large gradients. The

boundaries of the spectral patch need not be coincident with the boundaries of the elements,

so that high gradients inclined at an arbitrary angle to the mesh can be treated. With a
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modest increase in the number of unknowns, it is possible to achieve striking resolution of

the strain fields in problems such as viscoplastic shear banding.

The method originates from a desire to combine the generality of the finite element

method with regard to complex shapes and boundary conditions with the infinite order

convergence of the spectral method. While spectral interpolants can be introduced into

finite elements in regions of high gradients, a trem,-ndous number of unknowns is needed

to achieve good resolution when the high gradient is skewed in relation to the mesh. The

superposition technique described here enables one to orient the spectral resolution precisely

along the high gradient region, or in other words, exactly where it is needed.

Furthermore, in most problems in nature with high gradients, only a single component

becomes very large. We have taken advantage of this by using the spectral interpolant only

in one direction in the spectral patch.

A variational method was used to obtain the discretized equations. As a consequence,

it is only necessary that the spectral field vanish on its "long" boundaries. The continuity

of tractions and any inhomogeneous natural boundary conditions are then handled by the

finite element fields. Thus the method is easily applied to steep gradients which are skewed

relative to the sides of the finite element mesh.

The method was applied to the problems of shear banding in a tensile specimen with

several viscoplastic materials. The results show that the strain field is extremely localized

in a band of an order of 0.01 of a typical element size. Thus constant strain elements would

not be able to efficiently resolve the structure of this strain field. The shape of the localized

strain field depends highly on the imperfection used to trigger localization.

7. CONCLUSION

Not too long ago, strain softening has been ,,,sidered by mechanics theorists to be a

meaningless concept. Yet experimental work kcp providing clear indications of the existence

of distributed damage and of various responses that could be explained only by strain soft-

ening. Therefore, in the past decade strain softening became the subject of serious studies.
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one of which has been the present study supported by AFOSR. As a result of this as well as

other studies, the problem of strain softening is at present understood quite well although

not completely. It is known that strain softening as a material property must be associated

with some characteristic length of the material, that the mathematical treatment must in-

volve some type of localization limiter, that localization stabilities must be analyzed and

stable post bifurcation paths determined, and that attention must be paid to the size effects

- the principal consequence of strain softening from the practical viewpoint.
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Title no. 84-M41

Determination of Fracture Energy from Size Effect and
Brittleness Number

by Zdenek P. BaZant and Phillip A. Pfeiffer

A series of tests on the size effect due to blunt fracture is reported and sumed to be concentrated in a zone that is so small
analyzicd. It is oposed to define the fracture energy as the specific compared to the body dimensions that it can be treated
energy required for crack growth in an infinitely large specimen. as a point. In concrete, the fracture process takes place
Theoretically, this definition eliminates the effects of specimen size.
shape, and the type of loading on the fracture energy values. The over a relatively large fracture process zone whose size
problem is to identify the correct size-effect law to be used for ex. is, for the usual laboratory specimens, of the same or-
trapolation to infinite size. It is shown that Balaar's recently pro- der of magnitude as the size of the specimen itself. In
posed simple size-effect law is applicable for this purpose as an ap- other words, concrete is a material characterized by
proximation. Indeed, very different types of specimens, including blunt fracture. The tip of the large visible crack is
three-point bent, edge-notched tension, and eccentric compression
specimens, are found to yield approximately the same fracture en. blunted by a zone of microcracking that lies ahead of
ergy values. Furthermore. the R-cures calculated from the size e. the crack tip and is certainly rather long and possibly
feet measured for various types of specimens are found to have ap- also quite wide relative to the size of material inhomo-
proximately the same final asymptotic values for very long crack geneities.
lengths, although they differ very much for short crack lengths. The The material behavior in the fracture process zone
fracture energy values found from the size effect approximately agree
with the values of fracture energy for the crack band model when the may be described by a strain-softening stress-strain re-
test results are fitted by finite elements. Applicability of Balant's lation or, to some extent equivalently, by a stress-dis-
brittleness number, which indicates how close the behavior of speci- placement relation with softening that characterizes the
men or structure of any geometry is to linear elastic fracture mechan- fracture process zone over its full width. These mathe-
ics and to plastic limit analysis, is validated by test results. Compari- matical models indicate that the fracture energy is not
sons with Mode 1 shear fracture tests are also reported. the only controlling parameter and that the size and

shape of the fracture process zone as well as the shape
Keywords: concretes; cracking (fraeturing); crack propagation; dimensional of the softening stress-strain diagram have a significant
analysis; emaar; finite element method; measurement; specmens; tests. influence. This is no doubt the source of difficulties

and raises a basic question: can the fracture energy, the
The fracture energy of concrete is a basic material most important fracture characteristic of the material,

characteristic needed for a rational prediction of brittle be defined and measured in a way that is unaffected by
failures of concrete structures. The method of experi- the other influences?
mental determination of concrete's fracture energy, and The purpose of the paper is to show that this ques-
even its definition, has recently been the subject of in- tion can be answered in the affirmative. The key is the
tensive debate. Although in principle the fracture en- size effect-the simplest and most fundamental mani-
ergy as a material property should be a constant, and festation of the fracture mechanics aspect of failure. As
its value should be independent of the method of mea- we will see, if geometrically similar specimens are con-
surement, various test methods, specimen shapes, and sidered and the failure load is correctly extrapolated to
sizes yield very different results-sometimes differing a specimen of infinite size, the fracture energy obtained
even by several hundred percent." must be unique and independent of specimen type, size,

The crux of the matter is that the fracture of con-
crete, as well as brittle heterogeneous materials in gen-
eral, is not adequately described by the classical ideali -

zation of a line crack with a sharp tip. In this idealiza- Received Oct. I, 1986. and reviewed under Institute publication policies.
Copyright (0 1987. American Concrete Institute. All rights reserved, including

tion, which has been introduced for fracture with small- the making of copies unless permission is obtained from the copyright propr-
etors. Pertment discussion will be published in the September-October 19U ACI

scale yielding in metals,' the fracture process is as- aterca Journal if received by June 1. 1988.
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ton, Ill.. where he recently served a fve-year term as director of the Center for established theoretically as well as experimentally, the
Concrete and Geomaterials. Dr. Batant is a registered structural engineer and fracture process zone size is essentially determined by
is on the editorial boards of a number of journals. He is Chairman of AC? the size of material inhomogeneities, e.g., the maxi-
Committee 446. Fracture Mechanics; a member of ACI Committees 209. Creep
and Shrinkage , Concrete: and 348. Structural Safety; and a fellow of/ASCE, mum aggregate size. Therefore, the fracture process
RIL EM. and ,.,e American Academy of Mechanics; and Chairman of RI- zone must become infinitely small compared to the
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as shown in Fig. 1, (This in fact achieves conditions for
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both theoretical ind experimental research in fracture mechanics applications rather limited plasticity of concrete under tensile load-
and size effect in failure of concrete and aluminum. ings, the hardening nonlinear zone surrounding the

fracture process zone in concrete is rather small, and

NORMAL SIZE INFINITE SIZE the boundary of the nonlinear zone lies very close to the
boundary of the fracture process zone (see Fig. I). Un-
der this condition, the failure of an infinitely large

1) ELASTIC FIELD specimen must follow linear elastic fracture mechanics,

2) ASYMPTOC Based on this fact, it was shown", (see Appendix) that
'~ \*\*\2) NSPONINEAELASTIC FIELD the fracture energy of concrete may be calculated as

HARDENING ZONE gr (ad

,iFRACTURE G = AE (I)
PROCESS ZONE
(=NONLINEAR
SOFTENING ZONE) in which E, = Young's elastic modulus of concrete; A

= slope of the size effect regression plot for failure of
geometrically similar specimens of very different sizes,'

Fig. ]-Fracture process zone for normal size labora- which will be explained later; and g(a,) = nondimen-
tory specimens and for extrapolation to infinity sional energy release rate calculated according to linear

elastic fracture mechanics, which is found for typical
and shape because the fracture process zone in the limit specimen shapes in various handbooks and
becomes vanishingly small compared to the specimen or textbookss'a 2' and can always be easily determined by
structure dimensions. linear elastic finite element analysis; oN = relative notch

With this asymptotic approach, the argument is re- length = aald where a, = notch length and d = cross-
duced to finding and applying the correct size-effect section dimension.
law. Difficult as the precise answer to this question Since the fracture energy is determined in this
might seem, satisfactory results may nevertheless be method from the size-effect law, its value is, by defini-
achieved with an approximate size-effect law that was tion, size independent. This overcomes the chief obsta-
recently derived by Baiant on the basis of dimensional cle of other methods, e.g., the RILEM work of frac-
analysis and similitude arguments.' Ba2ant's law was ture method, ' -" which are plagued by a strong depen-
approximately confirmed by comparisons with test data dence of the measured values on the specimen size.
from fracture specimens,' '. 6 as well as certain brittle However, another question arises in the size-effect ap-
failures of concrete structures.'" Due to its approxi- proach: are the G, values independent of the specimen
mate nature, the applicability range of Balant's law is type or geometry?
limited to a size range of perhaps 1:20, while for a They must be independent. When the structure is in-
much larger size range, e.g., 1:200, a more accurate and finitely large and the fracture process zone as well as
more complicated size-effect law would no doubt be the nonlinear zone are negligibly small compared to the
required. specimen or structure size, nearly all the specimen is in

Since determination of fracture energy is of interest an elastic state. Now it is well known from classical
for finite element programs, we need to demonstrate fracture mechanics that the asymptotic elastic stress-
also that approximately the same values of fracture en- strain field near the crack tip is the same regardless of
ergy are obtained when the fracture energy value is op- specimen geometry and the type of loading. This field
timized to achieve the best fit of fracture test data with is known to have the form ao0 = r- I oj (0) in which a,
a finite element program. = stress components, r = radial coordinate from the

crack tip, 6 = polar angle, and i,, = certain functions
DEFINITION OF FRACTURE ENERGY BY listed in textbooks."' Therefore, the nonlinear zones in

INFINITE SIZE EXTRAPOLATION infinitely large specimens of all types are exposed on
The size effect can be isolated from other influences their entire boundary to exactly the same boundary

if we consider geometrically similar specimens or struc- stresses. It follows (assuming uniqueness of response)
tures. As mentioned, for normal-size fracture speci- that the entire stress-strain field within the nonlinear
mens, the fracture process zone is of the same order of zone, including the fracture process zone, must be the
464 ACI Materials Journal / Nov,.,,iber-December 1987
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Fig. 2sSize-efect plot (a, c, e) and inear-regression plot (b, d, J constructedfrom
the maximum load values measured for three-point bent, edge-notched tension, and
eccentric compression specimens of concrete and mortarfor various specimen sizes

same for all specimen types, and so the energy that is constant material property. This form is
dissipated in the fracture process zone per unit advance

of the crack tip must be unaffected by the specimen or I o(r(ed)structure shape. Consequently, the following definition a, rmt, w m th
of fracture energy must give unique results i ena ent dr
of size as well as specimen type: The fracture energy Gb
of a microscopically heterogeneous brittle material is in which r = I according to the initial proposal," m
the specific energy requiredfor crack growth a if vn- nominal strength at failure = Pbd where P = the
finitely large specimen maximum load, b = specimen thickness, and d =

The extrapolation to infinite size and the asymptotic characteristic dimension of the specimen or structure
conidsrations for the stress field could of course be (only geometrically similar specimens are considered):
mathematically formulated by transformations of scale f,' = strength parameter, which may be taken as the
in the formulation of the nonlinear boundary value direct tensile strength; d. = the maximum aggregate

problem, size; and B,X = two empirical constants to be deter-
mined by fitting test results for geometrically similar

SIZE-EFFECT LAW specimens of various sizes. Application of Eq. (2) to

The fractue energy determination would be exact if various types of brittle failures in concrete structures
we knew the exact form of the size-effect law to be used was demonstrated in References 17 through 22.
for extrapolation to infinite size. Unfortunately, we Note that for sufficiently small sizes d, the second
know this law only approximately, and the question is term in the bracket is negligible compared to 1. This
whether the approximate form is sufficiently accurate, means that a, is proportional to the material strength or
and if so, over what size range? The simplest form of yield limit, and this represents the failure condition of
the size-effect law results from dimensional analysis and plastic limit analysis, characterized by no size effect. In
similitude arguments'"' ' -" if it is assumed that either the the plot of log a, versus log d, this failure condition is
width or the length of the fracture process zone is a represented by a horizontal straight line [see Fig. 2(a)].
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since otherwise coefficient r cannot be determined un-
ambiguously. Note that Eq. (1) is valid only for r = 1;

(b)~ for other ri see the Appendix.
(a) ... Scatter-free values of maximum loads for geometri-

- !cally similar structures of different sizes can be gener-i , " e3 4d d ... . , - - - -ated with a finite element program based on fracture

-- Jd I mechanics. In Reference 13 it was shown that for a cer-
St-75 ain r-value, Eq. (2) can fit such results even if the size

o:i i f° ___ range is as broad as 1:500. However, this range is much

broader than feasible to test in a laboratory and needed
(d) in practice. Alternatively, scatter-free results can be

calculated for the line crack model of Hillerborg if the
,_- -  L,_-," - method of Green's function is used (private communi-

cation by Planas and Elices, June 1986). Such calcula-
tions, as well as similar calculations made by Rots, : ',

Fig. 3-Specimen geometry and loading detail for (a) Darwin, Hillerborg and others, 6 show that the re-
three-point bent, (b) edge-notched tension, and (c) ec- sponse in general, and the shape of the size-effect curve
centric-compression specimens in particular, are sensitive to the precise shape of the

softening stress-strain diagram or stress-displacement
diagram. Various possible shapes of this diagram yield

As another limiting case when size d is extremely different extrapolations to infinite size. From the prac-
large, the number I in the bracket is negligible corn- tical viewpoint, though, this fact does not seem to pose
pared to Thepsente then p i is propo t a serious problem. We do not need to extrapolate to
to d - . This represents the strongest possible size effect infinity in the mathematically true sense of the word.
and corresponds to the classical linear elastic fracture We need only to extrapolate to a specimen size that is
mechanics. In the plot of log aN versus log d, this lia- sufficiently larger than the fracture process zone, and
iting case projects itself as a straight line of downward Eq. (1) seems sufficient for that.
slope -i . The plot of the size-effect law [Eq. (2)] Eq. (2), as well as Eq. (3), is valid for geometrically
consists of a gradual transition between these two lima- similar structures of specimens made of the same moa-

iting cases-plastic limit analysis for very small struc- terial. This implies the use of the same maximum ag-

tures and linear elastic fracture mechanics for very large gregate size d . When d is also variable, one needs to

structures. The limiting cases are known exactly, and introduce the following adjustment of strength nes ' t

the question is the shape of the transition, which is the

purpose of Eq. (2).
The size-effect law in Eq. (2) results by dimensional f =  (1 + 17) (4)

analysis from the hypothesis that the total energy re-
lease W of the structure caused by fracture is a func- in which fO, and c, are empirical constants.
tion of: (1) the length a of the fracture, and (2) the area
nd, of the cracking zone, such that nd, = width of the TEST RESULTS
front of the cracking zone = constant (d. = maximum As already mentioned, the validity of fracture energy
aggregate size and n = I to 3 = empirical number). determination through the size-effect law [Eq. (1)] re-
The original derivation"t was simplified by truncation of quires that different types of specimens must yield
the Taylor series expansion of a certain function. If this roughly the same results if made from the same con-
truncation is not made, a more general size-effect law crete. In the previous study'6 where G, was first deter-
is obtained"'s mined from the size effect, test results for only one

specimen type-the three-point bent specimen-were
used. Therefore, the testing has been expanded to in-

a= Bf, (Co' + I + C, + C2t' (3) clude also other specimen types such as the double-
, IdA\" notched direct tension specimen sketched in Fig. 3(b)

+ C3  + " " ") -?" = \) and the eccentric compression specimen shown in Fig.
3(c).

Fig. 3(d) shows the stress distribution across the lig-
in which B, Ca, C,, C, .. r = empirical constants. In ament cross section drawn according to the bending
practice, however, no case where this more general theory. Although such stress distributions are unrealis-
form would be needed has yet been found. It appears, tic, they nevertheless reveal the great differences in the
and our analysis of test results will confirm it, that Eq. type of loading for the ligament cross section. For the
(2) can fit quite well any existing data with r = 1. The notched tension specimen, the entire ligament is sub-
size range of the existing test data is at most 1:10. jected to tension, which causes the fracture process
Coefficient r might be needed for a broader size range, zone to become very large. The opposite extreme is ob-
but this would be meaningful only if the statistical tained for the eccentric compression specimen, for
scatter were smaller than it normally is for concrete, which the major part ,, the ligament is subjected to
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compression and only a small part to tension [Fig.
3(d)]. In this case, the c,mpression ahead of the crack
that forms in the tensile zone prevents the fracture pro-
cess zone from becoming very large. The bent specimen
is a medium situation, in which roughly half of the
cross section is subjected to tension and half to
compression, and the fracture process zone is of me-
dium size.

Thus we see that the choice of these three specimens
covers the entire broad range of possibilities for the
type of loading in the ligament cross section. Previ-
ously, rather different results for the fracture energy
have been found for these specimens when the conven-
tional methods were used.

Photographs of the test specimens are shown in Fig.
4(a), (b), and (c). Despite the very different types of
loading for the ligament cross section, it was possible to
use specimens of the same geometry except for the
notches. All the specimens were of the same external
shape as previously used in a shear fracture study.' The
cross sections of the specimens were rectangular, and
the length-to-depth ratio was 8:3 for all specimens (Fig. Fig. 4(a)- Three-point bent specimen of 6-in. (152-mm)
3). The cross-sectional heights of the specimens were d depth
= 1.5, 3, 6, and 12 in. (38.1, 76.2, 152.4, and 304.8
mm) (see Fig. 3). The thickness of the bending and
compression specimens was b = 1.5 in. (38 mm) and
that of the tension specimens b = 0.75 (19 mm), as
shown in Fig. 3(b). For each specimen size and each
type, three specimens were produced. .qI

These 'X e specimens were from different batches;however, from each batch of concrete or mortar one -

specimen of each size was cast. Notches of depth d/6 •
and thickness of 0.1 in. (2.5 mm) (same thickness for
all specimen sizes) were cut with a diamond saw into
the hardened specimens. The specimens were cast with
the side of depth d in a vertical position. The concrete
mix had a water-cement ratio of 0.6 and cement-sand-
gravel ratio of 1:2:2 (all by weight). The maximum
gravel size was d, = 0.5 in. (12.7 mm), and the maxi-
mum sand grain size was 0.19 in. (4.83 mm). Mineral-
ogically, the aggregate consisted of crushed limestone
and siliceous river sand. Aggregate and sand were air-
dried prior to mixing. Portland cement C 150, ASTM
Type 1, with no admixtures, was used. Fig. 4(b)-Edge-notched tension specimen of 6-in. (152-

To get information on the effect of aggregate size, a mm) depth
second series of specimens was made of mortar, whose
water-cement ratio was 0.5 and cement-sand ratio was
1:2. The same sand as for the concrete specimens was of these values was determined from three cylinders for
used with the gravel omitted, and so the maximum ag- each specimen type (see Table 1). The tensile strength
gregate size was d. = 0.19 in. (4.83 mm). The water-ce- was estimated as f,' = 6 .T7 psi and Young's modulus
ment ratio differed from that for concrete specimens to as E, = 57,000 17,' psi, with f in psi (1 psi = 6895
achieve approximately the same workability. Pa).

To determine the strength, companion cylinders of 3 The specimens were removed from their plywood
in. diameter (76.2 mm) and 6 in. length (152.4 mm) forms one day after casting and were subsequently
were cast from each batch of concrete or mortar. After cured for 27 days (± 1 day) until the test in a moist
the standard 28-day moist curing, the mean compres- room of 95 percent relative humidity and 78 F (25.6 C)
sion strength wasf, = 4865 psi (33.5 MPa), with a temperature. All the specimens were tested in a 10-ton
standard deviation (S.D.) = 550 psi (3.79 MPa) for the (89-kN) (Fig. 4(b)] or 60-ton (534-kN) [Fig. 4(d)] servo-
concrete specimens and 6910 psi (47.6 MPa) with S.D. controlled closed-loop MTS testing machine. The lab-
= 207 psi (1.43 MPa) for the mortar specimens. Each oratory environment had a relative humidity of about
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Table 1-Measured compressive strengths and
estimated tensile strength and Young's elastic
modulus for concrete and mortar, for all tests

Cylinder Individual tests, f. %ian
for (psi) fI f',- I ,

loading 1 2 3 psi psi ksi

Concrete: -

Three-point bent 4798 4893 5160 4950 422 4010
Notched tension 4100 4190 4358 4216 390 3701
Eccentric compression 5218 5460 5610 5429 442 4200

Mortar:
Three-point bent 6952 7000 7114 7022 503 4776
Notched tension 6604 6638 6952 6731 492 4676

, Eccentric compression 6733 7003 7198 6978 501 4761

Note: I ksi - 1000 psi - 6.895 MPa.

than by cracking from the notch; by experimenting, the
minimum possible distance was found to be d/8.

A special loading grip was produced for the tensile
..... specimens. It consisted [Fig. 4(b) and 3(b)] of a set of

two aluminum plates compressed together by bolts.
Fig. 4(c)-Eccentric-compression loadings specimen of Sheets of hard rubber of I-mm thickness were placed
6-in. (152-mm) depth between the specimen surfaces and the plates to distrib-

ute the clamping evenly. The aluminum plates were de-
signed so they could provide grips for the specimens of
all the sizes. For the tension specimens the largest size
was omitted, i.e., only specimens of d = 1.5, 3, and 6
in. (38.1, 76.2, and 152.4 mm) were used. A universal
joint was provided at the top and bottom connections
to the testing machine to minimize in-plane and out-of-
plane bending effects.

The specimens were loaded at constant displacement
rate. For each specimen size the displacement rate was
selected to achieve the maximum load in about 5
rain( __ 30 sec).

ANALYSIS OF TEST RESULTS BY SIZE-EFFECT
LAW

The test results are plotted as the square and circular
data points in Fig. 2. The graphs of log a, versus log d,
nondimensionalized with respect to f' and d., are on
the left [Fig. 2(a), (c), and (e)]. At the right [Fig. 2(b),
(d), and (f)], the same test results are shown in linear

Fig. 4(d)-Testing machine with 12-in. (305-mm) regression plots, based on the fact that Eq. (2) can be
compression specimen algebraically rearranged to a linear form. Instead of the

plot Y = AX + C with X = d', Y =a;,' , A =
65 percent and temperature of about 78 F (25.6 C), and C(kd.)-, C = (B f,')-", it is more convenient to use
the specimens were exposed to this environment ap- the nondimensional plot of Y' = A 'X' + C' in which
proximately three hours before the start of the test.

The loading for the three-point bent specimens, as X' = (did,)', Y' = (..7 /a)2', (5)
shown in Fig. 4(a), applied three concentrated loads on- C' = B-', A' = C' X0-' = Af,'2"d
to the specimen-one load through a hinge and two
through rollers. The steel surfaces were carefully ma- The value of r = I is used in Fig. 2. If Eq. (2) was fol-
chined so as to minimize the friction of the rollers. The lowed exactly, the plot of Y' versus X' should be a
eccentric compression specimens were loaded in a vet- straight line of slope A' and Y'-intercept C' (Fig. 2),
tical position by two hinges, as shown in Fig. 4(c). The which is why the deviations from this line represent
loads were applied through steel plates 0.5 in. (12.7 statistical scatter. The plot of Y' versus X' has the ad-
mm) thick and glued to the specimen. For the eccentric vantage that one can apply linear statistical regression,
compression specimens, the load was placed as close to yielding the size-effect law [Eq. (2) and (5)] as the
the specimen corner as feasible but not so close that the regression line. The vertical deviations from the regres-
specimen would fail by shearing off its corner rather sion line may be charac,-rized by the coefficient of
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Table 2-Optimum values obtained by (a) linear regression and by (b)
Levenberg-Marquardt algorithm

C. A. 111 1
psi: in. 'psi 2 G . W,., W.,

Loading Material x I0- x 10' I b/in. 0o0 j 07 07o 07_

a)
Three-point bent Concrete 22.34 7.253 0.219 10 5.56 6.81 14.60 7.07

Notched tension Concrete 6.450 0.9134 0.205 7.89 3.42 14.84 13-91 14.92

Eccentric compression Concrete 2.861 1.573 0.254 13.14 !5.21 7.02 17.60 7.2.5

Three-point bent Mortar 4.759 10.94 0.122 9.51 7.11 4.141 12.74 4.18

Notched tension Mortar 4.439 1.133 0.131 7.74 3.67 10.221 13.; 10.44

Eccentric compression Mortar 0.8600 2.726 0.129 11. 28 t 6.60 j 4.81] 15.10 5.09

b)
Three-point bent Concrete 17.75 8.269 0.192 13.15 4.04 7.21 17.61 7.45

Notched tension Concrete 6.501 0.8888 0.211 7.92 3.41 15.32 13.97 15.40

Eccentric compression Concrete 3.337 1.435 0.279 14.40 4.68 8.43 19.29 8.63

Three-point bent Mortar 3.163 11.25 0.119 9.74 I 6.73 4.121 13.04 4.16

Notched tension Mortar 4.291 1.174 0.126 7.80 3.62 9.95 13.76 10.17

Eccentric compression Mortar 1.023 2.685 0.131 11.341 6.54 4.91 ] 15.19 5.19
Note: I lb - 4.448 N. psi - 6.895 Pa.

Table 3-Results of least-square optimization when specimens with
concrete and mortar are analyzed simultaneously

G, If
Concrete, Mortar,

Loading C, A' lb/in. lb/in. W,, ,, 4 ,, ,

Three-point bent 2.880 0.5331 0.229 0.129 0.1184 0.0982 0.0338 0.1283 0.0537

Notched tension 1.065 0.0634 0.210 0.118 0.0806 0.0375 0.0597 0.1060 0.0728

Eccentric compression 0.2559 0.1383 0.233 0.132 0.1252 1 0.0844 10.0309 10.1356 0.0519
Note: G - S (aJ',d./A'E,.

variation wx and the correlation coefficient r,, both and also separately for each specimen type. The optim-
indicated in Fig. 2. The value of A in Eq. (1) represents ization, based on linear regression, minimizes the sum
the slope of the regression line in the plot of Y = -2r A(a,) where A stands for the difference between the

versus X = d', and from Eq. (5) it is readily found that measured value and the value according to the equa-
A = A' 2 d- d;'. tion. The coefficient of variation of these deviations is

By plotting the test results for concrete specimens w,,,. The table also lists the coefficient of variation
and mortar specimens in the same diagram (Fig. 2), we w x, which refers to the deviations in terms of a,.
are able to extend the size range of the data. Due to this Another possibility is to optimize the fit in terms of
fact, the plots are based on the generalized Eq. (2), the deviations in a,, in which case the optimization
which includes the effect of maximum aggregate size problem is nonlinear. The fits, however, can be easily
[Eq. (4)]. obtained with the standard computer library subrou-

As for the value of exponent r, the overall optimum tine based on the Levenberg-Marquardt algorithm. The
was found to be 0.954. However, for r = I the coeffi- results are shown in Table 2(b).
cient of variation of the deviations was only slightly The objective of our analysis is the value of G,,
larger. Therefore the value r = I is used for the sake which can he found by Eq. (1). Values of gf(ao) for the
of simplicity in all the plots as well as the numerical ta- present three-point bent, notched tension, and eccen-
bles below. tric compression geometries are 6.37, 0.693, and 1.68,

Numerically, the test results are summarized in Ta- respectively, as calculated by linear elastic finite ele-
bles 2 and 3. Tables 2(a) and (b) show the statistical re- ment analysis. The E, value is listed in Table 1 for each
suits in which the concrete specimens and mortar spec- loading case for concrete and mortar. The G, values in
imens are treated separately, i.e., Eq. (2) is used with- Table 2(a) for concrete, i.e., 0.219, 0.205, and 0.254 lb/
out Eq. (4). Table 3 shows the statistical results when in. (38.4, 35.9, and 44.5 N/m), show statistical scatter
the data for all concrete as well as mortar specimens are with a coefficient of variation of I I percent. In Table
treated collectively using both Eq. (2) and (4). 2(b), the resulting G values for concrete for the three

Table 2(a) shows the statistical results calculated sep- specimen types are 0.192, 0.211, and 0.279 lb/in. (33.6,
arately for concrete specimens and mortar specimens 37.0, and 48.9 N/m), and their coefficient of variation
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Table 4-Measured maximum loads concrete and mortar from ACI formula E, = 57,000
Maximum load P, Mean ' as 3976 ksi (27.4 MPa) and 4738 ksi (32.7 MPa),

Depth d, lb , respectively.
Type of test in. 1 2 3 !b The principal results in Table 3 are the G values. For
Three-point bent - concrete they are 0.,.29, 0.210, and 0.233 lb/in. (40.1,Corepoitent . 4 436.8, and 40.8 N/m), which gives the coe fficient ofConcrete 1.5 405 408 417 410

3.0 677 706 711 698 variation of 5.5 percent. We see that these results are
6.0 990 1040 1096 1042 indeed less scattered than those obtained for the size

12.0 1738 1739 1773 1750 range of concrete specimens alone. For mortar, the C,

Mortar 1.5 456 508 543 502 values are 0.129, 0.118, and 0.132 lb/in. (22.6, 20.7,
3.0 703 752 777 744 and 23.1 N/m), which give the coefficient of variation
6.0 1005 1059 1104 1056

12.0 1484 1582 1588 1551 of 5.8 percent. Since the extension of the range of rel-
Notched tension ative sizes reduces the relative scatter of results, it ap-

pears that the scatter is probably indeed of random ori-
Concrete 1.5 385 405 413 401 gin, rather than due to omission of some unknown sys-

3.0 738 748 754 747
6.0 1242 1290 1382 1305 tematic influence, so the three types of specimens

Mortar 1.5 445 459 475 460 appear to give indeed approximately the same fracture
3.0 768 786 830 795 energy value. This is of course to be expected theoreti-
6.0 1292 1353 1401 1348 cally, but only if the correct size-effect law is known.

Eccentric compression Thus we may conclude that Eq. (2) with Eq. (4), where
Concrete 1.5 920 956 975 950 r = 1, seems to be an acceptable approximate form of

3.0 1604 1645 1746 1665 the size-effect law.
6.0 2500 2538 2791 2610 The measured maximum load values for all the indi-

12.0 3695 3711 4189 3865 vidual specimens from which the present results were
Mortar 1.5 936 972 1104 1004 calculated are summarized in Table 4.

3.0 1427 1458 1530 1472 Our finding that the three fundamentally different
6.0 2156 2232 2272 2220

12.0 2992 3010 3308 3103 specimen types yield roughly the same fracture energy
Note: I lb = 4.448 N; I in. - 25.4 mm. is the principal result of the present study. Neverthe-

less, these results should eventually be subjected to a
closer scrutiny using a much broader size range (muchis 20 percent. We see that the optimization by linear larger funds, of course, would also be needed).

regression gives somewhat less scattered results, and It is interesting to determine the optimum fits of the
therefore we will prefer it from now on. data under the restriction that the G value be the same

It is hard to decide whether the differences in the C1  for all three specimen types. For this purpose, Eq. (1)values are purely random or whether they represent with C1: from Eq. (2) may be algebraically rearranged to

systematic differences between various specimen types. the linear plot

By extending the size range of the tests, random scatter

can be minimized much more effectively than by in-
creasing the number of specimens. Due to the cost of Y" = X"/ + C" (6)
testing very large specimens, it has been decided to ex-
tend the size range in relative terms, i.e., in terms of in which Y" = aN,:/gf(c0 ), X" = d/E,, and C" =
d/d,, by analyzing simultaneously the results for con- C/g/o)(with r = 1). Since for these variables the slope
crete and mortar specimens. The results of such statis- of the regression line is GC' (Fig. 5) and the fracture
tical analysis, based on minimizing again the sum Ea energy is a material constant independent of the speci-
(a),2) are shown in Table 3. In carrying out the statis- men type, the test results for the three specimen types
tical regression, parameter co, governing solely the ef- should be fitted by regression lines with arbitrary ver-
fect of aggregate size, has been required to be the same tical intercepts but with the same slope. The test results
for all three specimen types; its value came out to be c, have been analyzed collectively for all the specimen
= 0.64 in. (16.3 in). The coefficient of variation w, in types under this restriction, and they are shown for
Table 3 characterizes the deviations in terms of the var- concrete and mortar in Fig. 5(a) and (b). Due to the
iable Y' = [fl (I + %['7 )/,]:, and the coefficient of scatter of the test data apparent in these figures, we
variation x characterizes the deviations in terms of cannot say that the test results prove that the slope (and
the variable Y = a, In the absence of a direct tensile thus the fracture energy) is the same for all the three
test, the values of f' for concrete and mortar were es- specimen types; however, we must also admit that these
timated from the ACI formula f; = f = 6.T, where plots do not reveal any systematic deviation from the
f, = average compressive strength = 4865 psi (33.5 constant common slope Gi'. To illustrate the scatter
MPa) and 6910 psi (1,120 MPa) for concrete and mor- more clearly we may shift the data for each specimen
tar, respectively. Then f0 was determined so that the type vertically so that the regression lines coincide (the
sum of squares of the difference offP (I + -v'" ) - shift being indicated by the vertical intercepts C, for
f for concrete and mortar be minimized; this yielded specimen types i = 1, 2, 3). The resulting plot is shown
f - 183.3 psi (1.26 MPa). Also, E, was estimated for in Fig. 5(c) and (d) for concrete and mortar, and it is
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Fig. 5-Plots demonstrating independence of fracture energy from specimen type,
(a, c) concrete and (b, d) mortar

seen again that although the large scatter prevents us should be to the limit of linear elastic fracture mechan-
from concluding that all three specimen types yield the ics. For the tension specimen, on the other hand, the
same slope, no systematic deviations from a common entire ligament is under tensile stress, and so nothing
slope are apparent. prevents the fracture process zone from being as long as

Comparing the size-effect plots in Fig. 2(a), (c), and the entire ligament itself. For such a large fracture pro-
(e), we may note that in the case of the eccentric cess zone, the behavior should be close to the strength
compression specimen the curve is quite close to the- criterion limit, as corroborated by Fig. 2(c). For the
asymptote of slope - 1/2 for linear elastic fracture me- three-point bent specimen, the size of the fracture pro-
ch'anics, while for the case of tension specimen the cess zone is also limited by the compression field of the
curve is quite remote from this asymptote, and for the top side of the ligament (Fig. 3(d)], but the tension part
three-point bent specimen an intermediate situation oc- of the ligament is larger than it is for the eccentric
curs. From comparisons of these graphs, we may ob- compression specimen, and so the fracture process zone
serve that the size range of the tension specimens would should be of medium length. This explains why the size-
have to be increased about 20 times to approach the effect plots for this type of specimens are intermediate
asymptote as closely as the compression specimen. Ob- between the tension and eccentric compression speci-
viously, the tension specimen is by far the best for ex- mens of the same exterior dimensions.
ploring, with relatively small specimen sizes, the behav- It must be emphasized that the size-effect method
ior near the horizontal asymptote for the strength cri- fails if the size range is insufficient compared to the
terion, and the eccentric compression specimen is best width of the scatter band of the test results. The rele-
for finding the linear fracture mechanics asymptote, vant data scatter is characterized by the standard de-
and through it the value of Gf. What is the reason for viation A of the regression line slope A and the corre-
these differences in behavior? sponding coefficient of variation WA, which are defined

It is the difference in the size of the fracture process as
zone that causes these behavioral differences, as we will
demonstrate by simplified analysis as well as finite ele- SSX

ments. The difference can be understood intuitively by WA 
= A SA =sx j'n -1 (7)

considering (according to the bending theory) linear-
ized stress distributions across the ligament as shown in where n is the number of all the data points in the lin-
Fig. 3(d). Even though these stress distributions are no ear regression, s, is the coefficient of variation of the X
doubt far from the real ones, they make it clear that for values for all the points, and srx is the standard devia-
the eccentric compression specimen the crack as it ex- tion of the vertical deviations from the regression line.
tends from the tension notch soon runs into a compres- The values of w4 are listed in Tables 2 and 3.
sion zone, and so the fracture process zone for the ec- If the size range were so narrow that it would be ap-
centric compression specimen can occupy only a small proximately equal to the width of the scatter band, the
fraction of the ligament. The smaller the relative size of data points would fill roughly a circular region (Fig. 6).
the fracture process zone, the closer the behavior One could still obtain a unique regression line, but its
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Fig. 6-(a) Size-effect method is inapplicable when the size range is too small com-
pared to scatter; (b, c) size ranige is sufficient

slope would be highly uncertain and could even come d
out negative. To prevent this from happening, it is nec- X3 0 (8)

essary that the value of wA would not exceed about 0.1.
Even then, by testing very many specimens (large n) one and can be calculated after X, has been determined
could make w, sufficiently low even when the data either experimentally or by finite element analysis. The
points fill roughly a circular region rather than an value of 1 = 1 indicates the relative size did at the
elongated band. To prevent this from happening, one point where the horizontal asymptote for the strength
needs to require further that, for any n, the value of criterion intersects the inclined straight-line asymptote

O would not exceed about 0. IS. for the energy failure criterion of linear elastic fracture
Obviously, if the test results are consistent, with a mechanics (Fig. 2). So 1 = I represents the center of

low scatter, one can do with a narrower size range than the transition between these two elementary failure cri-
if the test results are highly scattered. teria.

From w.A one can approximately estimate the coeffi- For < 1, the behavior is closer to plastic limit
cient of variation w, of the fracture energy Gf = analysis, and for > it is closer to linear elastic frac-
g1(cx)/AEc. If 0,, is assumed to be perfectly correlated anlsadfo13>Iiiscsetoiereatcfa-to E,he W. If G is assumed to be unrfectly correted ture mechanics. For 1 < 0.1, the plastic limit analysist o E c, t h e n w , =  wA . I f G . is as s u m e d to b e u n c o r r e -m a b e u d a s n a p r x a t o , n d f r 0 > 1 , l -
lated to E, then, as a second-order approximation, may be used as an approximation, and for 1 > 10, lin-, c her , €o +€o an € i th cefi- ear elastic fracture mechanics may be used as an ap-

where w = + w2 andW is the coeffi- proximation. For 0.1 < 1 < 10, nonlinear fracture
cient of variation of E. In reality one may expect analysis must be used.

W A 4< Wc, 4< C. To find the brittleness number, one needs to calcu-
It needs to be pointed out also that the size-effect to the ritene numberoenes to alu-

approach can be destroyed by other size effects. They- late the coefficient Xo, which represents the value of
may arise from diffusion phenomena, e.g., the heating did, at the point of intersection of the horizontal
(and microcracking) caused by hydration heat, which straight line and the inclined straight line in Fig. 2. Themay be significant for very large specimens, or the inclined straight line is given by the equation a =
drying of the specimen, which is more severe for thin- [GfE/gf(ao)d]P, which is valid according to linear elas-
drine of ler specimen, wtic fracture mechanics for any two-dimensional struc-
ner or smaller specimens. ture. The horizontal line is given by the equation a, =

Bf, when coefficient B is obtained by plastic limit
analysis. By equating both expressions for c,, Balant"

BRITTLENESS NUMBER obtained the following expressions for the transition
Our finding that the size-effect law yields approxi- value d, of the characteristic dimension d of the struc-

mately unique Gf values regardless of size and geome- ture and of the corresponding transition value of the
try makes it meaningful to base on this law a nondi- relative structure size did,
mensional characteristic 5 -" that indicates whether the
behavior of a given specimen or structure is closer to G, E, d(
limit analysis or to linear elastic fracture mechanics. d f, B g()' X =(9)

The relative structure size X = did, cannot serve as an

objective indicator of this behavior. This is clear from
the present tests. For X = 4, e.g., the behavior of the Therefore"
tensile specimen is (according to Fig. 2) closer to plastic
limit analysis based on the tensile strength, while the f' d
behavior of the eccentric compression specimen for X o 2 g,
= 4 is closer to linear elastic fracture mechanics. An
objective indicator is the recently proposed Ba2ant'sl' . °  Practical calculations may generally proceed as fol-
brittleness number 3. It is defined as lows: First solve the structL-e by plastic limit analysis,
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which yields the value of B. Second, solve the structure R-CURVES FOR DIFFERENT SPECIMEN TYPES
by linear elastic fracture mechanics, which yields the According to classical linear elastic fracture mechan-
value of gf. Third, calculate 03 from Eq. (10). This ics, the specific energy required for crack growth R is
method of calculating 0 requires no laboratory tests. constant and equal to the fracture energy G. For ma-
Alternatively of course, the brittleness number of a terials that do not follow linear elastic. fracture me-
certain type of structure of a given size can be deter- chanics, R varies with the length of crack extension
mined by fitting the size-effect law either to test results from the notch. This variation is described by the so-
or to finite element results for ultimate loads of struc- called resistance or R-curve. When the R-curves were
tures of similar geometry but sizes that differ from the first observed for ductile fracture of metals, it was
given size. (These finite element results must be based proposed 3" that the shape of the R-curve may be con-
on a softening stress-strain or stress-displacement rela- sidered to be approximately a material property. For
tion.) concrete, this concept was introduced by Wecharatana

It must be emphasized that the value of B must be and Shah," and further refined by Batant and Ce-
calculated by plastic limit analysis rather than an al- dolin.' Analysis of extensive test data from the litera-
lowable elastic stress formula. For example, for an un- ture showed that, as a crude approximation, the
reinforced beam of span L, rectangular cross section of R-curve may be considered unique for a certain limited
width b and net depth d in the middle, with concen- range of specimen geometries, 3' 6 but it can be very dif-
trated load P at midspan, we have M.' = PL/4 = f' ferent for some very different specimen geometries.16

bd2 /4 = plastic ultimate bending moment at midspan. Nevertheless, even though the R-curve is not a unique
From this we get a, = P/bd =f' d/L or a, =Bf; material property in general, it represents a simple,
where B = d/L = constant (for geometrically similar convenient way to reduce nonlinear fracture analysis to
beams). It would be of course incorrect to use the elas- a linear one.
tic formula M = f,' bd1/6 which would yield B = 2d/ For a specified specimen geometry and type of load-
3L. ing, there is a one-to-one relationship between the size-

The brittleness number can serve as a basic qualita- effect law and the R-curve."' If one is known, the other
tive indicator of the type of response. In this sense it is can be easily calculated. The method described
in fact analogous to the nondimensional characteristics previously 6 has been used to calculate the correspond-
used, e.g., in fluid mechanics, such as the Reynolds ing R-curves from the size-effect curves in Fig. 2. They
number. are shown in Fig. 7. Fig. 7(a) and (c) give the plots of

Some researchers have tried to characterize the ef- the specific energy required for crack growth R as a
fects of structure size on the qualitative fracture behav- function of the crack length c measured from the
ior by means of some nondimensional combination of notch. Fig. 7(b) and (d) show (for the same crack
G,, f,', and E,. This is, however, insufficient because lengths c) the relative values defined as R for the given
these parameters cannot reflect differences in structure specimen divided by R for the three-point bent speci-
geometry. For example, Carpinteril' characterized the men taken as a reference (by definition, for the three-
effect of structure size on its brittleness by the nondi- point bent specimen the relative values are all 1).
mensional ratio s = G,/bf; and lillerborg 's by the From Fig. 7 we may observe that for the three-point

nondimensional ratio of some structural dimension to bent specimens and the eccentric compression speci-
the characteristic length 1, = E, G1/f,'2, defined in the mens the R-curves are not too far apart. Therefore,

same manner as the size of the small-scale yielding zone their mean could be used as a material property for a
in metals.'.- However, these nondimensional ratios, crude approximation. For the tension specimen, how-
i.e., the Carpinteri's and Hillerborg's brittleness num- ever, the R-curve is very different. This proves that
bers, are objective only for comparisons of different general the R-curve of concrete cannot be considered to
sizes of structures of the same geometry. For the same be a unique material property. This conclusion, how-
value of either Carpinteri's or Hillerborg's brittleness ever, does not apply to the asymptotic values.
number, the failure of a structure of one geometry can The asymptotic value of the R-curve (c-co) corre-
be quite brittle, i.e., close to linear elastic fracture me- sponds to the limiting case of elastic fracture mechan-
chanics, while the failure of a structure of another ge- ics and is determined by the straight-line asymptote of
ometry can be quite ductile, i.e., close to limit analysis. slope - 2 in Fig. 2. While the R-curves are very dif-

The effect of structure size on the brittleness of its ferent for small crack lengths, the asymptotic values are
response is manifested not only in the maximum load nearly the same, up to a reasonable scatter range that is
but also in the post-peak shape of the load-deflection inevitable for a material such as concrete. This conclu-
diagram. As graphically illustrated in Fig. 6 of Refer- sion, which is particularly conspicuous from the rela-
ence 15, the total deflection is a sum of the deflections tive curves in Fig. 7(b) and (d), is a basic result of this
due to the fracture process zone and to elastic strains, study. Since the final asymptotic value of the R-curve
As the size is increased, the former remains about the represents the fracture energy G! as defined in this pa-
same while the latter increases, causing the post-peak per, this conclusion agrees with the previous conclusion
diagram to become steeper and steeper and eventually that the fracture energies are approximately the same
reverse to a snapback-type load-deflection diagram that for various specimen types, with a reasonable scatter
is unstable under both load and displacement controls. that appears to be random rather than systematiL.

ACI Materials Journal / November-December 1987 473



0.3)

...................... i 6.'Vii,
9X(9

oN, ,.oz-

" - 0.229 /In ,. R(,)3PB/R(p)3p
----- Gf - 0.210 lb./In.. - R()T/R )3pS

". G - 0.233 lb./,,.. R(c)EC 0 R(C)ECiR(c) 3PR0.0 0.

0.0 0.5 1.0 1.5 2.0 0.0 0.5 i.0 1.5 20
Crack Length. c (in.) Crack Length. c (in.)

0.150
I ) 2 (d)

:.--......-.............

= o.,o .........................

G - 0.129 Il./n.. R()3PB RIC)3pg/R(€)
3 p9

,, G1  0.110 Ib. ,I W NT ..... R(C)NT/R(0)3p

0.0 G, - 0.132 lb./In.. RIelEC -, R{€)EC/R(0.p

0.0 0.2 0.4 be 0.0 0.2 04 06
Crack Length. c (in.) Crack Length. c (in.)

Fig. 7-R-curves for three-point bent, edge-notched tension, and eccentric-
compression specimens of (a) concrete and (c) mortar, and (b, d) relative R-curves

evitable statistical scatter, the extrapolated dashed or
- - - solid curves in Fig. 8 yield almost equally good fits of

" with the measured data. It must be concluded that the exist-
ing methods that do not use specimens of very differ-

without ent sizes are inherently incapable of giving consistent
- - -J results for the fracture energy as defined here. They

size-effect low yield fracture energy values illustrated by the asymp-
tote of the dashed curves in Fig. 8, which are usable in

Othe analysis of structures that are not much larger than
IJUMITED RANGE the specimens tested, but are inapplicable to structures

that are much larger.
c, Crock Length These difficulties in determination of R-curve from

scattered data for a limited size range are further com-
Fig. 8-Extrapolation of R-curves with and without pounded by the fact that the R-curve has to be deter-
size-effect law mined as an envelope of a family of fracture equilib-

rium curves. 16. When these curves are scattered, an en-
With the help of the R-curves it may be explained velope simply cannot be constructed."6

why the methods currently used to define and measure
the fracture energy do not lead to unique results and FINITE ELEMENT ANALYSIS OF TEST RESULTS
exhibit a large spurious dependence on the specimen The size effect in fracture can also be described by
size. These existing methods generally use the same finite elements.16" ' By optimizing the material fracture
specimen geometry and dimensions (size) and rely on parameters so as to obtain the finite element fit of the
measurements at various crack lengths or notch lengths. present test data, it is possible to obtain the fracture
The work of fracture method recently adopted by energy. Is this result approximately the same as the
RILEFMl is of that type, as is the ASTM method for fracture energy value obtained directly from the size-
the measurement of R-curve. Because the specimens are effect law?
of one size, the results correspond to a short segment of To answer this question, the present test specimens
the size-effect curve, which in turn corresponds to a were analyzed by finite elements in exactly the same
relatively short segment of the R-curve. This is so, even manner as described on pages 302 to 303 of Reference
if the measurements are done at various crack lengths 16. The analysis utilizes the crack band model with a
or various notch lengths, as demonstrated by finite ele- square mesh of four-node quadrilateral elements in the
ment results in Fig. 7 of Reference 16. Thus one ob- fracture region. The fracture is simulated by a band of
tains for the R-curve a set of measured points occupy- cracking elements of a single-element width. The
ing only a small part of the R-curve, as illustrated in cracking is described by gradual strain-softening in the
Fig. 8. Obviously, extrapolation to c-,m from such elements of the crack band. To explore the effect of the
data for a limited size range is ambiguous. Due to in- shape of the stress-strain diagram for strain softening in
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the crack band, the analyses are carried out both for (a)
linear softening [Fig. 9(a)], as in Reference 37, and for
strain-softening given as an exponential passing through q. 2 Gf
the same peak point [Fig. 9(b)]. The fracture energy in f f W
this approach is given by the area under the uniaxial EC
tensile stress-strain diagram, multiplied by the width wc
of the crack band front. This width must be considered
to be a material property independent of the element (b) Cf

size and represents a certain small multiple of the ag-
gregate size. The finite element solutions are obtained a = c e-c (softening)
by step-by-step loading. They yield the maximum loads ft
to which the size-effect law can be matched. C -

The results of the finite element calculations are •
compared with the direct analysis of test data by the f
size-effect law in Table 5 and Fig. 10. The size-effect - 0-
law results a~e listed in the first column for Gf in Table Gf f2

5. The finite element results obtained with linear and w 2 Ec
exponential strain-softening are listed in the last two
columns of Table 5. These values were obtained by fit-
ting the size-effect law to the finite element results for Fig. 9-Uniaxial stress-strain curves for (a) linear and
specimens of various sizes, and then matching the size- (b) exponential softening
effect law to the curve [Eq. (2)] that optimally de-
scribes the test data. The fracture energy may then be Table 5-Comparison of fracture energy from
obtained either from the asymptotic slope for the size- size-effect law and finite element results
effect curve that fits the finite element results (Table 5), Size-
or directly from the area under the stress-strain curve effect Linear Exponential

law G,, softening softening(Fig. 9) considered in the finite element analysis, times Loading Material lb/in. G,, lb/in. G,. lb/in.
width w, (Table 6). For the three types of specimens Three-point bent Concrete 0.229 0.230 0.249
used, the results are given in the last two columns of Notched tension Concrete 0.210 0.230 0.249
Table 5, separately for concrete and mortar. Since all Eccentric compression Concrete 0.233 0.230 0.249
the specimens were cast from the same concrete, the Gf Three-point bent Mortar 0.129 0.130 0.141
values from finite elements with linear softening were Notched tension Mortar 0.118 0.130 0.141
forced to be the same for all the three types of tests Eccentric compression Mortar 0.132 0.130 0.141

(0.230 lb/in. or 40.3 N/m). The exponential softening
is always introduced in such a manner that the areas Table 6-Material constants for strain softening
under the stress-strain diagram, and thus also G, would used in finite element analysis
be the same as for linear strain softening. The results Softening f,', Es  w. 1 G,.
for exponential strain softening (material parameters Behavior Material _ _psi _ i in. lb/in.
given in Table 6) are different, but only marginally so, Linear Concrete 390.7 3976 1.85 0.230
and are close to the G0 values calculated directly from Linear Mortar 519.7 4738 0.703 0.130
the size-effect law for each specimen type - for concrete Exponential Concrete 390.7 3976 2.85 0.249
as well as mortar. Compare the columns of Table 5. Exponential Mortar 519.7 4738 1.083 0.141

Generally, the finite element calculations indicate *w° = crack front width.

relatively good agreement between the G values that
give optimum fits of the measured maximum loads by the three-point bent, notched tension, and eccentric
the finite element program and those obtained by fit- compression specimens, respectively. For linear soften-
ting the size-effect law to the measured maximum loads ing WnX = 0.14 and for exponential softening Z,., =
for various specimen sizes. The finite element results in 0.20. Linear softening seems to match the test data
Fig. 10 are compared directly with the test data and the somewhat better than exponential softening, for this
size-effect law fits from Fig. 2 based on both the log particular set of data.
(aN/f') versus log (did,) plot (a, c, and e) and the lin- The finite element crack band model can also be used
ear regression plot (b, d, and f). The finite element to obtain the R-curves."" The results of such calcula-
meshes used to obtain these results are drawn in Fig. tions are shown in Fig. 12. The finite element R-curves
II. The coefficient of variation wtV, for the linear obtained for both linear and exponential softening fol-
regression plots is given for each loading case and for low the general trend of the R-curves obtained by the
both linear and exponential softening. Among these size-effect law from the measured maximum loads (Fig.
fits, the best that one could hope to obtain is the size- 7). The linear softening seems to give a slightly better
effect law, which has an average coefficient of varia- agreement than the exponential softening when com-
tion of = 0. 11 where Zx = { fu, (3PB) + w2, ;,x pared to the R-curves deduced directly from the test
(NT) + .wjx (EC)]/3)1 ":; 3P8, NT, and EC stand for data.
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SHEAR FRACTURE (MODE II) ture energy G, = G}. This may be explained by corn-
All of our analysis thus far dealt with the opening pressional resistance to concrete between the cracks in

fracture mode (Mode I). According to test results in a the inclined direction parallel; to the cracks. 2' The size-
recent paper,2 ' the size-effect law is also applicable to effect regression plots for Mode II are shown in Fig.
shear fracture (Mode II). Shear fracture can be pro- 13(a) and (b) and the finite element results in Fig. 13(c)
duced on the same specimen as used here for tension and (d).

and compression, although with a different type of Recently, Batant and Prat" applied the size-effect
loading, siown in Reference 29. For this loading the law to Mode III fracture tests of cylindrical specimens
fracture eriergy for Mode II can be calculated from Eq. with circumferential notches, subjected to torsion, and
(I) using, ,(c 0) = 2.93, as indicated by linear elastic used again Eq. (1) to determine the Mode III fracture
fractur,, :nechanics.' ' In finite element modeling, the energy of concrete.
crack baid model is applicable to shear fracMure as

well, provided the smeared cracks within the finite ele- CONCLUSIONS
ments are allowed to be inclined with regard to the 1. Fracture energy of a brittle heterogeneous mate-
crack band, letting them form with the orientation nor- rial such as concrete may be defined as the specific en-
real to the maximum principal stress. The compression ergy required for fracture growth when the specimen or
stiffness and strain-softening of the concrete between structure size tends to infinity. In this definition the
the cracks. joaded in the direction parallel to the cracks, fracture energy is a unique material property, indepen-
is taken il;Lo account.2'  dent of specimen size, shape, and type of loading.

Tests for shear fracture, comparable with the pre- 2. The foregoing definition reduces the problem to
ceding IeSUhs, were conducted with the same type of the question as to which form of the size-effect law
concrete. rherefore, the results for shear fracture are should be used for extrapolating the test results to infi-
also listed in Tables 7 and 8. The Mode II fracture en- nite size. Although the exact size-effect law is not
ergy G;' is found to be far larger than the Mode I frac- known, the present test results indicate that Ba :ant's
476 ACI Materials Journal / November-December 1987



approximate size-effect law [Eq. (2)1, with a correction (0) (b) (c)
for the maximum aggregate size [Eq. (4)], may be ac'-" -- "
ceptable for practical purposes. --- - -

3. When the present method is used, different types '
of fracture specimens - such as the edge-notched ten- -._ C

sion specimen, three-point bent specimen, and notched -_

eccentric compression specimen - yield approximately
the same varues of fracture energy. The observed scat- (d) a -.-

ter range is about the same as the usual range of inevi- . .. 2 ... 2

table scatter for concrete. Thus, the present method of (e) (3
defining and measuring the fracture energy appears to (e)

be approximately independent of both the specimen size -- . .- ,.,-
and type - a goal not yet achieved with other meth- , ' -ods. -- ' ' - " ' i ' -

4. Ba.ant's'" ° brittleness number 0 [Eq. (8) and I -.--

(10)], based on the size-effect law, may be used as a -

nondimensional characteristic of fracture similitude,
which indicates how close the structure behavior is to
linear elastic fracture mechanics or to limit analysis. -C,2 (g) (h) (i)
Balant's brittleness number, in contrast to Carpinteri's
or Hillerborg's, is independent of the shape of speci- ,
men or structure, and so it can be used to compare the
brittleness of structures of different shapes. For 0 -
0.1, the response of a structure of any shape is essen- !t4 I
tially ductile and plastic limit analysis applies, for 0 - Cq/

10 it is essentially brittle and obeys linear elastic frac-
ture mechanics, and for 0.1 < 0 < 10 the brittle and
ductile responses mix and a nonlinear fracture analysis
is required. Fig. 11-Finite element meshes for (a, b, c) three-point

5. R-curves for various specimen types, calculated on bent, (d, e, f) edge-notched tension, and (g, h, i) eccen-
the basis of the size effect from the maximum loads of tric-compression specimens
specimens of different sizes, are very different for short
crack lengths but approach a common asymptotic value Table 7-Comparison of fracture energy from
for large crack lengths. size-effect law and finite element results for

6. The present test results can be described by the fi- shear fracture
nite element crack band model. The fracture energy Size-effect Linear Exponential
values determined from the size effect approximately law softening softening

agree with the fracture energy value used in the finite Loading Material G, lb/in. G, lb/in. G, lb/in.

Shear Concrete 6.30 5.31 6.83element code, which represents the area under the ten- Shear Mortar 3.34 2.82 3.62
sile stress-strain diagram multiplied by the width of the
cracking element at fracture front. Table 8-Material constants for strain softening

used in finite element analysis of shear fracture

Softening 1', E ,, w,, G,
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STRESS INTENSITY FACTOR AND DERIVATION may write the size-effect law in the alternative form

OF EQ. (1) = gc G , + (14)

The size-effect law (Eq. (2)] yields
which is based on fracture parameters G, and g, (a.) instead of plastic

= Bf ()4 d/d)" for d > > do (11) limit analysis parameters f,' and B.
Eq. (12) may further be used to determine the effect of size on the

value of the critical stress intensity factor K, which is obtained when
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ABSTRACT. - The paper shows that a previously proposed size effect law

can be used to identify nonlinear fracture properties solely from

measured maximum loads of geometrically similar ceramic fracture

specimens of sufficiently different sizes. This law represents a

first-order global approximation of the deviations from linear elastic

fracture mechanics, independent of the type of the toughening mechanism

in the fracture process zone. It provides a simple and unambiguous way to

determine the size- and shape-independent values of the fracture energy,

the effective length of the process zone, and the effective crack-tip

opening displacement. It also yields the R-curve, which is geometry-

(shape-) dependent. The proximity of response to linear elastic fracture

mechanics is characterized by a brittleness number, which is

shape-independent.

[Key words: size effect, fracture energy, fracture process zone,

brittleness number, R-curve. ]
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I. Introduction

Various ceramics and ceramic composites exhibit toughening

mechanisms such as transformation [1-2], microcracking (2-41, crack

deflection and crack bridging [2, 4-101. These mechanisms greatly elevate

the effective fracture toughness and endow the material with a pronounced

R-curve behavior. Fracture behavior of ceramics has been studied

intensely, however, one avenue of inquiry, which has met with great

success in global modeling of nonlinear fracture of other brittle

heterogeneous materials such as concrete, mortar and rock, has received

little attention in the studies of ceramics. It is the size effect in

fracture, which is most directly manifested in the values of the nominal

strength of geometrically similar fracture specimens of different sizes.

The size effect is the main practical consequence of fracture mechanics.

It must be taken into account in design, and it can also be exploited for

determining material fracture parameters merely from maximum load

measurements, which are easy to carry out.

The principal purpose of this paper is to apply to ceramics the

recent results on the size effect achieved in fracture studies of

concrete and rock, and to demonstrate the usefulness of a size effect law

[11] giving a first-order global approximation to the deviations from

linear elastic fractur .echanics. For readers' convenience, the paper

will also give a concise review of the basic results on the size effect

in fracture which appeared in a number of recent papers [11-20].

Furthermore, the existing results will be extended by presenting

statistical estimates of standard deviation and an effective method of

regression of test data on apparent fracture toughness of similar
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specimens of different sizes.

Although the effect of structure size as well as geometry on the

strength and fracture toughness of ceramics has already been studied by a

number of researchers (21-27], only one of the existing data, namely

those of McKinney and Rice (23], appear to have a sufficient size range

for determining fracture properties. These data, pertaining to one kind

of silicon dioxide and two kinds of silicon carbide, will be utilized in

the present study to illustrate the identification of fracture

properties, and in particular, the determination of the R-curve. The fact

that the specimen size affects the measured (apparent) fracture toughness

values of ceramics has already been pointed out [23-25], but

determination of fracture parameters and the R-curve from the size effect

has apparently not yet been attempted in the study of ceramics.

It has often been thought that the R-curve behavior is important

only for the ceramics in which the fracture process zone (including the

frontal and crack bridging zones) extends over many millimeters. But

everything is relative. What matters is the ratio of the structure size

to the inhomogeneity size (or more precisely, to the process zone size,

which is related to the texture, size and distribution of

inhomogeneities (28]). Thus, even an R-curve whose range is much less

than 1 mm can be important if the specimen is small enough.

A secondary purpose of this paper, intended to highlight the

relativity of scale, is to call attention to the similarity of fracture

between ceramics and concrete. In the literature on fracture of ceramics,

only a few studies [e.g. 5-6, 10] have referred to the extensive and
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exploding literature on the fracture of concrete. Yet many of the

fracture problems of brittle heterogeneous materials with a pronounced

R-curve behavior have already been successfully tackled in the literature

on concrete. These advances have been driven principally by the needs of

finite element analysis, which has been widely practiced for concrete

because of the forbidding costs of real-size testing of certain

structures.

The essential difference between fracture of concrete and ceramics

is merely that of scale. In normal concrete, the typical maximum

aggregate size is 20 mm, in high strength concrete 10 mm, and in dam

concretes 80 mm or more (the corresponding fracture process zone lengths

are typically 100 mm, 10 mm and 1000 mm, respectively). In ceramics,

there are coarse-grained microstructures with grain size larger than 1 mm

as well as fine-grained microstructures with grain size less than 5 zm

(the corresponding process zone lengths are roughly between 20 mm and 100

gm). When the specimens of each material have the same cross section

size, the degree of brittleness observed in fracture behavior will be

vastly different. What matters, however, is the ratio of the structure

size to the fracture process zone size. Thus, a concrete slab 400 mm in

thickness and a fine-grained ceramic wafer 1 mm in thickness are likely

to exhibit about the same type of fracture behavior, which is nonlinear

and transitional between linear elastic fracture mechanics and

plasticity. Practical applications necessitate extrapolations of scale -

in concrete often to much larger structures, while in ceramics for

electronic applications to much smaller structures. For both, knowledge

of the law governing the size effect Is essential, which is the principal
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focus of this study.

The size effect that we are going to study is caused by the

differences between the energy release rates of small and large

structures. It is not a statistical size effect. The well-known Weibull-

type weakest link statistics (22] governs the size effect in unnotched

structures failing at the initiation of the first macrocrack from a

microscopic flaw. But it plays only a minor role in notched fracture

specimens. So it does in unnotched structures that fail only after a

large stable crack or cracking zone has already formed [12]. Designs that

ensure such a type of failure are enforced in concrete design codes by

the requirement that the maximum load must be much larger than the crack

initiation load. It may of course be appropriate to apply a similar

requirement for ceramics. Such a requirement can be met, for example, by

providing proper steel reinforcement in concrete or fiber reinforcement

in ceramics.

II. Size Effect Law and Its Consecuences

The most important consequence of fracture mechanics is the effect

of size on the nanal stress at failure. To describe it, we consider

geometrically similar structures or specimens of different sizes (with

geometrically similar notches or initial cracks), and introduce for

two-dimensional (2D) or three-dimensional (3D) problems the nominal

stress at maximum load:

P P
CN =c - (for 2D) or a, = c u (for 3D) Cl)n nbd N nT

where P = maximum load (ultimate load), b = thickness of
u
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two-dimensionally similar structures or specimens, same for all the

sizes, d = characteristic dimension of the structure or specimen, and

cn = coefficient introduced for convenience. For example, if d is the

depth of a simply supported beam of span L, the elastic formula for the

2maximum bending stress is oN = 1.5 PuL/bd = c P /bd with c n= 1.5 L/d

constant if the structures are geometrically similar). Likewise, if the

plastic bending formula, O.N = u L/ b d 2  is used, then cn = L/d C=

constant).

As is well known, plastic limit analysis, as well as elastic

analysis with an allowable stress criterion or any method of analysis

with a failure criterion based on stress or strain, exhibits no size

effect, i.e., geometrically similar structures of different sizes fail at

the same wN" However, this is not true of fracture mechanics. Due to

similarity of stress fields In similar two-dimensional elastic structures

of different sizes, the total potential energy of the structure must have

the form U = (a-2/2E')bd 2f(a) where a = c P/bd, P = load, f(a) is an

function of the relative crack length and depends on the shape of the

structure, m = a/d (a is the crack length), E' = E for plane stress, E' =

E/(1-v 2 ) for plane strain, E = Young's modulus of elasticity, and v =

Poisson's ratio. Therefore, the energy release rate is G= -(aU/aa)/b =

-(aU/ac)/bd = -d(Or2/2E')f'(x), from which:

G a P2gC) Ki M V s Pk(a) (for 2D problems)(2)

E'b2d KfbV-o

where KI is the stress intensity factor, f'( ) = 8f(x)/8a, g(m) =

-f'()c 2/2, and k(a) = /gTc. It may be checked that, for all structure
n

shapes, the formulas for G or KI have the form of Eq. (2). The values of
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k(a) can be obtained by linear elastic analysis, such as finite element

analysis, and for basic specimen geometries km) follows from the

formulas for the stress intensity factors found in handbooks (e.g. Tada

et al. [291 ).

For three-dimensional similarity, U = d3 (.2/2E')f(a) where c =

cnP/d2 , and GOd = -8U/aa = -(MU/aa)/d = -d2 (a-2/2E')f'(W), where pd =

length of the perimeter of the fracture front (p is a constant) and G =

average energy release rate per unit length of the perimeter. Therefore,

G = EPg(a} K - (for 3D problems) (3)

E'pd3  I

In linear elastic fracture mechanics (LEFM), the size effect is very

simple: o- o d-1/2 (from Eqs. 1-3). A deviation from this law is caused

by the existence of a finite, nonnegligible fracture process zone which

surrounds the tip of the macroscopic continuous crack (and Is associated

with R-curve behavior).

The energy release rate, G, represents the energy flux into the

nonlinear zone at the crack tip from the surrounding material which is in

an elastic state. This definition of G coincides with Rice's J-integral

but is less general than that. In the line crack models with bridging

stresses, the J-integral, and thus also G, Is equal to the area under the

curve of bridging stress vs. crack opening displacement [e.g. 4, 30]. The

J-integral gives the correct energy flux not only for integration

contours lying outside the nonlinear zone but also for those lying In the

hardening elasto-plastic part of the nonlinear zone, provided that 1) the

contour does not pass through the fracture process zone, defined as the

softening zone, and 2) that the unloading irreversibility is unimportant.
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The reason that the contours passing through the fracture process zone

must be barred from the J-integral is that microcracking and other damage

in this zone dissipate energy. While in ductile fracture of metals the

fracture process zone (in which voids and microcracks nucleate, grow and

coalesce) is negligible in size compared to the nonlinear plastic-

hardening zone, in ceramics, rock and concrete the fracture process zone

is large while the plastic-hardening zone is negligible; see Fig. I taken

from Ref. 13.

In this study we will consider only specimens or structures in which

g'(x) > 0. In such structures, said to be of positive geometry [31], the

process zone starts to evolve from zero size and then grows as the load

increases while remaining attached to the notch tip. If the structure is

not large, the process zone length is significant compared to the length

of the notch or initial crack, a0, and the equivalent crack length a =

a0+c at failure must be distinguished from a0, where c = elastically

equivalent length of the process zone. The crack length a is understood

to be the equivalent crack length in the sense of linear elastic fracture

mechanics (LEFM). The equivalent process zone length c (Fig. 2) is

defined as the distance from the tip of the notch or critical crack to

the tip of the equivalent crack which gives, according to LEFM, the same

unloading compliance. The value of G is the energy release rate for the

equivalent linearly elastic crack.

Let cf be the value of c in an infinitely large structure (d 4 m) at

maximum load (which represents the limit of stability if the structure is

under load control rather than displacement control). Further, let Gf be

the the corresponding value of G required for crack growth at d 4 w. In



the limit of d 4 w, one has c/d - 0 and a -) 0 = a/d. Thus, in an

infinitely large specimen, the fracture process zone occupies only an

infinitesimal volume fraction of the body. Therefore, the entire body can

be treated as elastic. Consequently, the stress and displacement fields

surrounding the process zone are the asymptotic elastic fields. They are

known to be the same for any specimen geometry, and so the shape and size

of the fracture process zone must be the same. It follows that Gf and c.,

defined as the limits of G and c for an infinitely large specimen, are

independent of the specimen shape. Therefore, unambiguous definitions of

Gf and cf as fundamental material properties, independent of specimen

size and shape, can be given as follows (12,18]:

Gf and cf are the energy required for crack growth and the

elastically equivalent length of the fracture process zone, respectively,

in an infinitely large specimen.

This definition of fracture energy can be mathematically stated as

f2 /E')ford4 wh c and KIc are the values ofGf - i c =l(c I /E)frd hr c

G and KI [Eq. (2)], respectively, calculated from the measured peak load

Pu and the initial crack or notch length a0 using LEFM equations. More

generally, Gf can be defined as the limit of J-integral for d 4 w.

The value of G required for fracture growth is basically determined

by the size of the process zone. Since the value of c is also determined

by this size, the value of G for a growing crack may be assumed to be a

function of the corresponding value of c (which serves as the basis of

the R-curve approach). The value of c at P - P determines the value of (u

and consequently the value of g(a) at failure, and so the ratio G/g(a) at

maximum load should be approximately equal to Gf/g(af). Therefore, G =
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Gfg(a)/f(Of). Now we may substitute this expression Into Eq. (2), make

further the approximation g(a) - g( 0 )+g'( 0Ma)( f- O) (from Taylor series

expansion assuming that g' ( 0)>O), denoting 'f = 0 +Cf/d and g'( 0 ) =

dg(ao)/da, and further set (from Eq. 1) P2 = (O-bd/cn)2 and solve for o*

Thus we obtain the following approximate size effect law:

cn(- g 1f (4)n cc 0n ),Ocf + g(a 0)d  )

This law may alternatively be written as (181:

1

TN = __ _ (5)

where

Pu g((O)
TN = vg , = d (6)

TN = intrinsic (shape-Independent) nominal stress at failure, and d =

intrinsic (shape-independent) size of the structure (18], which was also

introduced in a somewhat different context by Planas and Elices (31].

The quantity that makes d shape-independent is the ratio

g((0)/g'(aO) [18], which has also been introduced for similar purposes by

Planas and Elices [31] and for other purposes by Horii et al. (32]. Since

the factor g(a)/g'(a) in Eq. (6) takes the specimen shape into account

only in an approximate way, the tests, whose results are used in

regressions according to Eq. (5), should preferably involve only
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geometrically similar specimens.

The size effect law has also been derived in two other ways: 1) by

the method of energy release zones, and 2) by dimensional analysis and

similitude arguments [11,12]; see Appendix. The latter derivation, which

is more general, is based on the hypothesis that the total energy AU

released due to crack formation is a function of both the initial crack

length a0 and the size of the process zone in an infinitely large

specimen, which is a material property. This derivation yields the size

effect law in the original form proposed in Ref. 11:

Bf
.= V' d (7)

where fu is an arbitrary measure of material strength, B and d are two

empirical constants, and 1 is called brittleness number [12, 171. Eq. (7)

is obtained both for two-dimensional and three-dimensional similarity

[12]. Eq. (7) is applicable not only to notched specimens but also to

unnotched structures provided that 1) a large stable crack develops

before the maximum load is reached, and 2) the cracks for similar

specimens of various sizes are geometrically similar (which has been

shown to be often true for concrete structures).

The size effect law in Eq. (7), giving the approximate relation of

TN to g, is plotted in Fig. 3. For large ) such as j>10, Eq. (7) gives

(with an error under 5%) the approximation -N = Bf U9 , which is the

size effect exhibited by LEFM. For small g such as 0<0. 1, Eq. (7) yields

(again with an error under 5%) aN = Bf = constant, that is, there is no

size effect and the failure load is proportional to the strength of the
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material. For 0.1<3<10, the size effect is transitional between plastic

limit analysis and LEFM. In this range, nonlinear fracture mechanics must

be employed. Overall, the choice of the method of analysis and the type

of failure are as follows (12]:

1 < 0.1 plastic limit analysis

0.1 S s a 10 nonlinear fracture mechanics (8)

1 > 10 LEFM

As we see, the brittleness number (Eq. (7)) is capable of

characterizing the nature of failure regardless of structure geometry.

Other definitions of the brittleness number were proposed by Hillerborg

(331, Carpinteri (34], Gogotsi et. al [35], and Homeny et. al [36], but

they do not represent absolute (shape-independent) measures of

brittleness. Also it may be noted that the basic shape of the

transitional size effect curve shown in Fig.3 was known prior to the

formulation of Eq. (7) and was graphically sketched, without any formula,

by various investigators, e.g. Walsh [37].

Eq. (7) has the same form as Eq. (4). But it should be noted that,

in the form of Eq. (4), both parameters are calculated solely from the

limiting case of infinite size. In general, this cannot be accurate for

very small sizes. For most practical applications, the form of Eq. (4)

can nevertheless be accepted. The values of Gf and cf can be calculated

from the size effect law parameters d0 and B in Eq. (7). Taking the limit

of Eq. (2) In which P = P - bdcN/cn expressing aN from Eq. (7), and

noting that lim a - a0 for d m, one gets the formula (12]:
2f2

c E
n
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Note that Gf can be determined without calculating g'(ao). Furthermore,

from Eqs. (4) and (7) [18]:

dog(aO ) (10)

fi'Z 10

The brittleness number, 1, may now be expressed as [18]:

a g(co ) d
Cf 8I(a)cf (i

Note that the ratio d/cf is geometry dependent. Geometry independence is

achieved by the factor g(ao)/g'(aO). Another formula can be obtained by

expressing d0 from Eq. (9) and substituting it into 3 = d/d0 (Eq. 7).

This yields [12, 17]:

B2g (O) d d E' GfS _ 2 du  d (12)

c2 Tju fun u

where tu is a material parameter with the dimension of length and d0

represents the transitional size which corresponds to the intersection of

the horizontal and inclined asymptotes in Fig. (3) and depends on

structure geometry. The ratio d/iu is geometry dependent, and geometry

independence of g Is achieved by the factor (B/cn)2 g( 0 ).

Since Eq. (12) involves the value of B that characterizes the limit

load of a smail structure, this equation is more accurate when g is

small. On the other hand, Eq. (11) is more accurate when g is large since

it ignores B (which characterizes small structures) and is based solely

on cf and the LEFM function g(a) (see Appendix).

In view of the approximate nature of the size effect law in Eq. (7),

the infinite size needed to define Gf and cf must not be interpreted

literally. In practice, the infinite size should be assumed as a size
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only one order of magnitude beyond the range for which the size effect

law has been calibrated by tests or otherwise.

The size effect law in Eq. (7) has been shown to agree quite well

with tests on concrete fracture specimens of different sizes and

geometries, including three-point bend specimens, centric tension

edge-notched specimens, eccentric compression specimens [171, and compact

tension specimens (38]. Various specimen shapes were shown to yield about

the same value of Gf according to Eq.9. A good agreement was also

demonstrated for high strength concrete [201, various rocks t18,19] and

aluminum alloys (16], and to some extent also ice (391. The size effect

law in Eq. (7) was shown to also apply for Mode II (401 and Mode III [411

fractures, and for double-punch compression fracture (42].

Some nonlinear fracture models utilize as a material parameter the

crack-tip opening displacement at the maximum load, 5 . Using thec

well-known LEFM expression for crack opening width, a = (8KI/E')(s/2z) 1/2

where s = distance from the crack tip, and setting s cf, KI = Kif, one

gets, for an equivalent elastic crack in an infinitely large specimen

(19, 311:
8Ki

4 'c (13)
c E' 4 W'

This value can also be determined from the size effect law, after

obtaining from this law the values of cf and Kif; Kif = Vf (= the

value of apparent fracture toughness KIc for an infinitely large

specimen).

In conventional testing, the apparent fracture toughness, Kic , is
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usually determined by methods of linear elastic fracture mechanics

without regard to the variations of the size of the fracture process

zone, as if a = a. (a = a0 , c - 0) at failure. For that case, one gets

frmEq 2)G 2  2 2 2from . (2) Gc= Pug(aO)/E'b d. Substituting Pu = (rNbd/cn) =

(Bfubd/cn)2 d0/(d+d 0 ) and expressing Bfu by means of Gf from Eq. (9), one

gets from Eqs. (5)- (7) and (11):

2 G d d
Gc rN d - f G G f- (14)

cf

Since K =a , the apparent fracture toughness is found to vary as
Ic c

[17]:

-f1 /2 )1/2 (5

Idc =K0 TN -&

The size effect law in the form of Eqs. (5), (7) or (15) has the

advantage that Its parameters Gf (or Kif ) and cf can be determined from

the measured peak loads P by linear regression (17-181, provided that au

sufficient range of sizes is used, of course. Algebraic rearrangement of

Eqs. (5) and (15) yields the linear plots:

Y = AX + C or Y' = A'X' + C' (16)

in which

2 2 2X - , Y - A/T a I/K if C- cf/K f (17)

2 2 2X , 21/1  A'= cf/K f C' = l/Kf (18)X'- 1/d ,Y'- 1/ Ic A CfKf ' /if(8

Linear regression in each plot yields the slope A or A' (and their

coefficients of variation wA and wA' ) of the regression line and its

vertical intercept C or C' (and their coefficients of variations C d
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WC,), from which the values of cf and Kif (as well as their coefficients

of variation wcf and wKIf ) follow. The first plot (Eq. (17)], however,

is preferable for calculation of Kif because its slope is independent of

Cf. and normally the slope of a regression line is more accurate than the

intercept.

The fact that the size effect law is amenable to linear regression

makes it easy to obtain the statistics characterizing the uncertainty of

Gf, cf, Kif and 6c. To calculate the coefficient of variation of Kif and

Cf , one may consider the regression of I/rN2 vs. d (Eq. (17)]. Because

Kif = A- 1/ 2 and cf = C/A, we have the approximations:

WKIf =  /2 and W =( 2 + )1/2 (19)Kf='A cf A C

where wA' WCP representing the coefficients of variation of slope A and

intercept C, are obtained by standard formulas of linear regression

statistics. These formulas are asymptotically exact if the distributions

of A and C are normal and wA' WC are very small. Similarly, if we

consider Eq. (18), we have the approximation:

'KIf = C'/2 and W cf = (2, + W 1)/2 (20)

Also, since Gf K1 f/E', the coefficient of variation of the fracture

energy can be approximated as:

2 w'2  1/2
WGf ' (4wIf E (21)

These coefficients of variation characterize not only the material

uncertainty but also the model uncertainty. It should be noted that they

depend strongly on the range of sizes. By increasing the range, one can
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decrease the coefficients of variation.

For certain specimen geometries, for example, the double cantilever

specimen, the center-cracked panel loaded on the crack, the

chevron-notched specimens (25], the indentation test (2, 26], and the

double-punch compression test (42], g'(a) can be negative for a certain

initial range of a-values. In this case, which we so far excluded from

consideration, g(a) exhibits a minimum at a certain value, ami n , of the

relative crack length. The peak load for ideally brittle materials (which

have a zero-size fracture process zone) occurs when a equals the value of

a0 or amin' whichever is larger. When g' (a) is negative, the crack

propagation is more stable and easier to control than the tests in which

g'(a) is positive. These observations have led various investigators to

expect the toughness value obtained from the peak load of a test where

g'(O ) is initially negative to be size-independent, and therefore a true

material property. Later, however, several investigators observed from

this type of tests (25] that the calculated apparent fracture toughness

values are size-dependent, and that the equivalent relative crack length

at the peak load is also size-dependent and greater than both amin and

0

An alternative, widely used approach to study the nonlinear fracture

properties is to test specimens of constant size but with various crack

or notch lengths (8, 24-27, 31, 36]. To get useful results, the size of

the specimen should be large with respect to microstructural

inhomogeneities as well as crack size. Some specimens with very small

cracks (flaws) must also be included in the test series. Cook et al.

(26-27] studied the effects of crack and grain sizes, using ceramic
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specimens with different fine grain sizes and with flaws created by

controlled Indentation. Their study (26] shows i4 a different way the

transition from strength plateau to the LEFM-type size effect as the flaw

size Increases. They emphasize that nonlinear behavior should be

considered in extrapolating macroscopic crack test results to structures

with microscopic flaws. This is in a way similar to using the present

size effect law for extrapolating the results from test-size specimens to

smaller structures.

III. Geometry-Dependent R-Curve

The size of the process zone Initially grows as the load increases.

This causes an Increase of the resistance R(c) to fracture growth,

representing the energy dissipated per unit specimen width and unit

length of advance of the equivalent LEFM crack (whose tip lies roughly In

the middle of the process zone). The fracture propagation condition may

be written as G = R(c). In the early works (43-44], for the sake of

simplicity, the R-curve was assumed to be a material property. Later,

however, it was established that the R-curve depends on the specimen

shape [ e.g. Ref. 17]. As shown in Ref. 15, and refined in Ref. 18, the

R-curve for a specimen of given geometry can be calculated from the

material parameters obtained by the size effect method;

R(c) - G 1 f (22)

in which
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c 1 '(C&o0 )  fg(ccj )

[-; g'a + 'gl - ao (23)
Cf gw_- 7x1

These equations define the R-curve parametrically. After determining Gf

and cf from the size effect law, a series of values of a( which is here

a dummy variable) may be chosen, and for each of them the length c of an

elastically equivalent (traction-free) crack calculated from Eq. (23),

and then R(c) determined from Eq. (22). If c is specified, a1 may be

solved from Eq. (23) by Newton iterations and subsequently R(c) computed.

The dependence of the R-curve obtained according to Eq. (22) on the

specimen geometry Is introduced by the LEFM function g(a).

For readers' convenience, the derivation of Eqs. (22) and (23) is

briefly as follows [18]. The energy balance at failure requires that

F(c,d) - G(a,d)-R(c) - 0 where a s a/d - a0 +c/d. If we change the size

slightly from d to d+6d but keep the geometric shape (i.e. aO =

constant), failure now occurs at c+8c, and since G = R or F = 0 muqt hold

also for c+6c, we must have aF/ad = 0. Geometrically, the condition aF/ad

= 0 together with F(c,d) = 0 means that the R-curve is the envelope of

the family of fracture equilibrium curves F(c,d) = 0 for various sizes d.

Because the R-curve is size-independent, we have aR/ad = 0 and so 8G/8d =

0. Now we may substitute P2 = (aNbd/c ) = (Bfubd/cn)2 /(+d/d ) where
ii n ) n 0

(Bf u)2 = Cn E'Gf/dog(aO ) (according to Eq. (9)) Into G = Pg~a)/E'b d (Eq.

(2)). We thus obtain for the critical states:

g(=) d

G (,d) = G g(K) d (24)

2Setting aG/ad - 0, and noting that 8a/Bd = aa /ad + 8(c/d)/ad = -c/d

- (-o0)/d (because aa0/ad - 0 for geometrically similar structures), we
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get:

d g(- C 25)
do  (a-ao}(a)

Furthermore, substituting this, along with the relations (a- 0 )d = c and

d o = cfg'(ao)/g(aO) (from Eq. (10)] into Eq. (25), and setting G(a,d) =

R(c), Eq. (22) is proven. Furthermore, elimination of d and Gf from Eqs.

(25), (24) and (22), with G = R, yields Eq. (23).

The dependence of the fracture toughness on c (i.e. the R-curve of

fracture toughness) can be determined from the relation KIR = y :

KIR- Kf k(a)k (a)Cf 1/2 (26)

To get better insight, we can obtain from Eqs. (22) and (23) the

initial and terminal slopes of the R-curve :

[ c c, 0  Gf g'(a m r} 8[R] c0 = [ J c=C=0 (27)

Here am represents the limiting value of a as d 4 0, which gives the

following condition, from which a may be solved:m

g~maM= a0 + , ( m )  (28)

The R-curve of Eq. (22) starts from zero, which means that the

process zone forms right at the beginning of loading and that there is

never any singularity at the crack tip. This type of R-curve also ensues

from models in which crack bridging is the only toughening mechanism

[32].

Some models for composite materials consider the R-curve to start
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from some initial nonzero value (6, 30], interpreted as some small-scale

value of the fracture energy (or toughness) of the material. This kind of

R-curve implies that the crack tip can sustain, up to some value of Kit a

singular stress field without showing any damage, which is unreasonable.

Nevertheless, for some composite materials (especially fiber composites)

with fine-grained matrix, In which fibers or coarse particles create a

relatively large bridging zone, a non-zero initial value of R-curve may

be practical, and may be explained by assuming that the matrix itself

will, on a smaller scale, exhibit a microscopic, relatively fast rising

R-curve.

Eq.(22) or (26) applies only as long as the fracture process zone

grows and remains attached to the notch tip, which is approximately up to

the peak load. For the post-peak regime, in which the fracture process

zone gets detached from the notch tip 119], the value of R does not

follow the R-curve [Eq. (22)] but must be kept constant and equal to the

.value of R at the peak load. This behavior was first introduced as a

hypothesis and was subsequently verified by comparisons of predicted load

deflection curves with measurements [19-20]. Without keeping the postpeak

value of R constant, close agreement could not be obtained.

Based on fracture tests, various investigators have found the

R-curves to depend on the size and geometry of the specimen as well as

the notch length (8-9,16,19-201. Our preceding calculation of the R-curve

indicates that this phenomenon has principally two sources: 1) The effect

of g'(m) and g(a) which depend on specimen geometry [18], 2) The fact

that R deviates from the Eq. (22) after the peak load, as just explained.

Other minor effects, however, may contribute, too.
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It may also be noted that, according to some tests on ceramic

specimens (8-9], interaction of the process zone and the specimen

boundary can even lead to a falling R-curve after a plateau is passed.

The declining end of the R-curve may correspond to shrinking of the

process zone as the end of ligament is approached; this would be

significant for specimens with very small uncracked ligaments and would

affect only the final part of the post-peak response.

IV Application 2f. the EIM Effect Method to Ceramics

To demonstrate applicability of the size effect method, the test

results of McKinney and Rice [231 on slip-cast fused silicon dioxide

(SiO2 ) and on two types of silicon carbide (SIC) refractories have been

analyzed. The slip-cast fused silica used in these tests is a material

consisting 99% of SiO 2, with a relatively large porosity (12%). It has

the density 1900 kg/m 3 , grain size 10-20 gm, and modulus of elasticity E

= 57.9 GPa. The silicon carbides used in these tests had the porosity of

15%, density 2600 kg/m 3 , and maximum grain size 2000 jum. So these

ceramics, due to their grain structure, have a heterogeneity which may be

significant for small sizes. One of the silicon carbides tested, of the

type CN-137, consisted 78% of SIC, and 20% of Si3N4  with modulus of

elasticity E -130 GPa. The other silicon carbide tested, of type CN-163,

consisted 85% of SiC and 13% of S120N2, and had a modulus of elasticity E

- 140 GPa.

All the test specimens were three-point-bend beams (see Fig.4).

Their dimensions and failure loads are given in Table I, in which L =

beam span, d - beam depth (chosen as the characteristic dimension), b =
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width, and a0 - length of the notch cut at mldspan, and Pu = failure

load. The specimens were not geometrically similar exactly, but the

length of all the specimens was nearly four-times their depth.

As reported by the authors [23], the maximum loads of the slip-cast

fused silica specimens of sizes d - 5.1 mm and 6.5 mm exhibited an

unexplained drop, and therefore these results have been deleted from the

data base. It should also be mentioned that the successive groups of

smaller specimens were cut from the broken halves of the larger specimens

after their fracture. Since the larger specimens had only small stresses

at the crack location In the smaller, subsequently cut specimens, the

results should not have been affected appreciably.

The three-point-bend beam results may be analyzed on the basis of

Srawley's [29] approximation of function k(a) :

k(a) - 1.5LV 1.99-m(1-m)(2.15-3.93a+2.7Qx2) (29)
d (1+24)(1-a)

3/ 2

The linear regression plots based on Eq. (17) are shown in Fig. 5. From

the linear regressions based on Eqs. (17) and (18), the values of Gf and

cf have been calculated and are listed In Table II. Aside from the linear

regression, the values of Gf and cf have also been obtained by direct

nonlinear optimum fitting of Eqs. (5) and (15) to the test data, which

was accomplished by a standard library subroutine using Levenberg-

Marquardt algorithm for nonlinear optimization.

Table II also gives the coefficients of variation w T and wK of the

vertical deviations of the test data from the regression lines with the

ordinates TN and KIc respectively:
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1/2 2 -1/2
e - [ I 2 nN e  (30)

n/2 -1/2

c e(K I c K n) 1c ( 3 1 )

where n - total number of specimens and subscripts e and p refer to the

experimental values (Eqs. (6) and (2)] and the corresponding predicted

values (Eqs. (S) and (15)], respectively. The coefficients of variation

for the deviations (w T or i) in the corresponding nonlinear regression

based on Eqs. (5) or (15) are, in all the cases, smaller. The reason is

that the objective functions of the optimization are different.

The values of (JKIf and wcf [Eqs. (19) and (20)] are also shown in

Table II. We see that although the values of fracture toughness Kif for

all optimization procedures are close, the results for the effective

fracture process zone length cf show much greater dispersion and are

indicative only of the order of magnitude of cf. Also it is seen that cf

is generally much larger than WKIf" So the effective length of the

fracture process zone is much more uncertain than the fracture toughness.

This Is probably not just due to the modeling but is a natural property.

Evidently, cf Is more sensitive to the range and scatter of the test

results than is Kif or G., same as observed previously for concrete and

rock. However, a broader range of specimen sizes could be used to

determine cf more accurately. For the rest of the present paper, the

results of the nonlinear regression based on Eq. (5) will be used.

The ratio of cf (Table II) to the grain size is found here to be a
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relatively large number (30 to 60) for SiO 2. Swanson et al. (5] have

measured the crack bridging zone length for alumina (with mean grain size

of 20 m, about the same as Si0 2 ), and found it to be about 100-times the

grain size. The spacing of the bridging grains was about 2 to 5 grain

size. Based on this observations, and considering that the fracture

process zone length is roughly 2cf, the present value cf = 0.6 mm seems

reasonable for SiO Also note that the slip-cast fused silicon dioxide

used has a significant amount of porosity (23], which could help in

toughening by shielding of crack tip.

The effective critical crack-tip opening displacements, a c as

calculated from Eq. (13) for SiO2 , SiC(CN-137), and SiC(CN-163), are

0.97 am, 34.54j.m, and 53.12pm, respectively.

Fig. 6 gives the normalized values of the nominal stress at failure

as a function of the brittleness number, $, in logarithmic scales. These

plots indicate that the largest specimens of SiO 2 which were tested may

be considered to be sufficiently large for their behavior to approach

linear elastic fracture mechanics (this is also revealed by the

brittleness number range 3 = 1.5 to 10). For SiC(CN-137) specimens, on

the other hand, the response is far from linear elastic fracture

mechanics and is actually closer to plastic limit analysis, as is clear

from Fig. 6b as well as the range of the brittleness number, which was g =

0.06 to 0.25. The brittleness number range for SIC (CN-163) specimens was

S 0.9 to 3.9 which is in nonlinear zone. In this regard it should be

noted that the actual specimen sizes for both SiC materials CN-137 and

CN-163 were almost the same, although the ranges of their brittleness

numbers are very different. This illustrates that one cannot really
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compare the apparent fracture toughness values measured on identical

specimens of different materials. Such comparisons should be based only

on the asymptotic values for the size approaching infinity, which can be

obtained only if the size effect law is known.

FIg.7 shows the values of the apparent fracture toughness Kic of

these ceramics as a function of the brittleness number, i, based on

Eq.(15). A trend similar to Eq. (15) can be observed in various other

experimental results (25, 26, 38). From FIg.7 one can observe that, in

contrast to the nominal strength values, the fracture toughness of the

CN-137 type of SIC is more size dependent than it is for the other two

ceramics tested, for the present size range. It means that, for this size

range, the behavior of the CN-137 type of SiC is farther from linear

elastic fracture mechanics than it is for the other two ceramics. By

comparing Figs. 6 and 7 with Table II, it can be seen that, for the case

when A>i for all the specimens, linear regression based on Eq. (17) is

not suitable (the case of SIO2). The best test data are those which,

similar to the case of SIC of the type CN-163, include values for both

9<1 and 8>i.

The foregoing results highlight the dependence of the conventional

values of fracture energy, fracture toughness, and effective process zone

length on the microstructure of materials, as already emphasized by some

researchers [26, 45-461. It should be noted that, in order to allow

meaningful comparisons of fracture properties of ceramics with different

grain size and different microstructures, the specimens used should have

the same range of brittleness number rather than the same sizes. The size

effect tests based on the size effect law make such comparisons possible.
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Fig.8 shows the effect of the notch length on the apparent fracture

toughness of the three-point-bend specimens of ditferent sizes, as

calculated on the basis of Eq. (15) for the present geometry. It may be

noticed from this figure that, for large sizes and for 0.15 < c0 < 0.80,

the apparent fracture toughness appears to be nearly independent of the

notch length. In this kind of test, in which all the specimens have the

same size but various notch lengths, it is important that the range of a0

values include values below 0.15; otherwise it Is hardly possible to

detect the nonlinearity of fracture [26-27]. Fig. 8 also shows the

importance of the choice of specimen size in this kind of experiments.

Fig.9 shows the R-curves calculated from the size effect law

according to Eqs. (22) and (23) for the present three-point-bend specimen

geometry and for different relative notch lengths. For each different

notch length, the R-curve is different, however the differences are

Insignificant for notch lengths exceeding 0.33 of the beam depth. It

should be pointed out that for different types of fracture specimens,

such as eccentric compression specimens, tensile edge-notched specimens,

and compact tension specimens, the size effect method yields very

different R-curves (181.

The equivalent length of the fracture process zone can be compared

with the ligament length;

a = 0 (32)

r d - a0  1 -M

Aside from am [Eq. (28)], the limiting values of ar for d 4 0, denoted as

arm, are plotted in Fig. 10 as a function of a0" We see that, for a0 >

0.15, arm = 0.24, and that the plot of Mm vs. a 0 is a straight line.
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V. Calculation of Load-Deflection Curve from Size Effect

Knowing the R-curve, one can easily calculate the load-point

displacement, u [9, 19]. The complementary potential energy of the

structure is IT*= C(a)P 2/2 where C(a) = compliance at crack length a. The

energy release rate at constant P is G = (d' /da)/b = P 2[dC(a)/da]/2b.

Substituting Eq. (2) for G, one gets a differential equation for C(a).

Integration at constant P furnishes:

C(a) = C + 2-g(x' d' (33)
"0

At the. same time, from Eq. (2) for G = R (Eq. (22)I:

P = b / d)R(c) , u = C(a)P (34)

Choosing various values of x, one can calculate the corresponding values

of P, C(a) and u. (For an alternative derivation based on Castigliano'

theorem, which is not as simple but is more instructive, see Ref. 47.)

Since there exist no pertinent size effect test data for ceramics,

we illustrate the application of Eqs. (33) and (34) by showing in Fig. 11

the results for limestone (191, which behaves similar to ceramics. We see

that the measured load-displacement curve in Fig. llb has been predicted

quite closely. The prediction was based solely on the measured maximum

loads of geometrically similar three-point-bend specimens whose sizes

ranged as 1:4. The size effect plot from which the material parameters

were determined is shown in Fig. la. An equally close agreement has been

achieved for high strength concrete with fine aggregate (20], which also
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behaves similar to ceramics.

Note that, conversely, by fitting the measured P(u) curve according

to Eqs. (33) and (34), one can obtain estimates of the values of E', Gf

and cf.

The work of fracture [21, 481, Wf, can be obtained from the area

under the P(u) curve, as well as from the area under the R(c) curve (9].

It may be noted that the value of average fracture energy Gf = W f / where

t is the length of ligament [for three-point-bend specimens t = (1-a )d]

is in this manner found to be strongly size-dependent as well as shape-

dependent [19-21, 38 and 491. This shows that the work-of-fracture method

does not yield unambiguous information on fracture energy, except if the

results are extrapolated to infinite size, as proposed by Planas and

Elices (49].

VI. Sensitivity of Fracture Properties to Micromechanics of Process Zone

As the foregoing theory illustrates, the size effect law yields, for

a given structure geometry, a certain unique shape of the R-curve. Vice

versa, from a measured R-curve, one can calculate the size effect curve

N (d) (15]. Furthermore, from either the size effect law or from the

R-curve, one can calculate the corresponding relation r (6) of bridging

traction ab vs. crack opening 5 in softening Dugdale-Barenblatt-type

models. Vice versa, from -Cb(S) one can calculate both the R-curve and the

size effect curve for a given geometry (31-33]. Thus, the size effect

law, the R-curve, and the *b (5)-curve, each of which can completely

characterize the fracture properties, are uniquely related to each other.
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All the aforementioned characterizations are sensitive to specimen

or structure geometry. However, the sensitivity of the size effect law

appears to be the least, and much less than that of the R-curve. This

transpired from the experimental results for concrete and rock (17-19],

which revealed that Eq. (7) works about equally well for very different

specimen geometries.

From the viewpoints of micromechanics and development of new,

tougher materials, there are of course great differences between various

toughening mechanisms in ceramics, such as crgck bridging, the dilatant

transformation toughening, or crack-tip shielding by a microcracking zone

induced by material heterogeneity. The details of such mechanisms and the

microstructure properties which govern them influence, as is well known,

the effective ab(S) relation for crack bridging. Likewise, they do

Influence the shape of the size effect curve at least to some extent.

However, they are likely to influence the shape of the size effect

curve only insignificantly because the size effect law has by now been

shown to be applicable to materials of very different microstructures and

toughening mechanisms. The present approximate, two parameter form of the

size effect law in Eq. (7) suffices only for a global, first order

approximation to deviations from linear elastic fracture mechanics, which

is the sole object of interest here. The various possible mechanisms will

probably influence only the additional parameters of a more complicated

size effect law (see Appendix]. The only significant property which

matters from the present viewpoint of macroscopic nonlinear fracture

characterization is that there exists at the crack tip a process zone of

a finite, nonnegligible size, and that the maximum possible effective
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size cf of this zone is, in fracture situations, approximately a material

property. Knowledge of cf cannot be used to distinguish between various

toughening mechanisms such as crack bridging or microcracking; rather, cf

lumps their effects together.

The type of microstructure and the precise form of the toughening

mechanism in the process zone decide, of course, the values of Gf (or

Kif) and cf. They will have to be considered if the values of Gf and cf

should be predicted from microstructure properties, rather than just

determined empirically, by the fitting of test data, as already

explained.

By various more detailed assumptions about the micromechanics of the

process zone, further information can be extracted from size effect

tests. Planas and Elices (31] computed the relation between cf and

certain other characteristics of the fracture process zone for crack

bridging models with various softening %b()-relations. For example, for

a linearly softening mb(3) relation, which is widely used because of its

simplicity and has the form of ob = ft( 1- 3/f) where ba(6f) = 0 and Gf

= f 6 /2, Planas and Elices obtained cf = 0.420 top where to = E'G If 2
tf ff 00 ft.

For the same relation, Horii et al. [32] calculated the maximum length

(for d 4 w ) of the fracture process zone to be tf = 0.732 to, from

which, according to the linear softening model, cf = 0.573 t r For

' b(6)-curves with a long tail, the ratio f /cf is larger, while the

bridging stresses closer to the initial notch are smaller.

By estimating 1 0 from cf for an assumed Tb (6) relation, one can

calculate the local tensile strength as ft = (E'G f/ )/2" It should be

noted that ft could also be estimated by proper plastic analysis of the
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structure for d 4 0, which does not depend on the form of the ab (a)

relation. These two values for ft should be the same, which gives a

constraint that can help in identifying a realistic function for rb (8)

from a generalized size effect law with three parameters (see Eqs. (AS)

and (A6) in the Appendix].

VII. Conclusions

1. The size effect law in Eqs. (4), (5) and (7) gives a global

characterization of nonlinear fracture properties of ceramics with

toughening mechanics. It represents a first-order approximation to the

deviations from linear elastic fracture mechanics. Its form is

independent of the detailed toughening mechanics, but knowledge of this

mechanism will be needed for predicting the size effect law parameters

rather than measuring them.

2. The size effect law provides a simple and unambiguous way to

determine from the maximum load data on geometrically similar specimens

of different sizes the values of: (1) the fracture energy, Gf (or

fracture toughness, K if), and (2) the effective length of the fracture

process zone, cf. From these, one can also further obtain other

parameters of the process zone such as the effective critical crack-tip

opening displacement, 8co as well as the R-curve, which is geometry

dependent. The material parameters can be identified by nonlinear

optimization as well as by linear regression. Knowing cf, one can

determine for the given structural geometry the brittleness number, which

characterizes the t:pe of fracture behavior of any specimen or structure.

3. Silicon carbide [SiC(CN-137)] beam specimens of cross section
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depths from 7 mm to 37 mm exhibit behavior that is closer to plastic

limit analysis than to linear elastic fracture mechanics (LEFM). On the

other hand, fracture behavior of the SIC(CN-163) specimens of the same

sizes is transitional between plastic limit analysis and LEFM. The

behavior of slip-cast fused silica beam specimens of depths from 5 mm to

32 m is closer to LEFM.

Appendix

Derivation of Size Effect Law by Dimensional Analysis. - The size

effect law for geometrically similar structures (Eq. C7)] can be derived

most generally by dimensional analysis and similitude arguments (11] on

the basis of the following hypotheses: (I) The energy release of the

structure is a function of both: a) the length of fracture, a, and b) the

characteristic size of the fracture process zone, cf. (II) The length a

at maximum load is not negligible compared to structure size d.

The total energy release due to fracture must be expressible in the

form:

2  a cf
W -,b a f ~ (Al)W = -!E f(01, O& ) 0 = J , 02 = d

where (N = CnPu/bd; 01 , and 02 are independent nondimensional parameters

(their number follows from Buckingham's theorem of dimensional analysis),

and f is a certain function which may be expected to be smooth. From the

crack propagation condition aW/8a bG f we get:

2= f a 2 (A2)
d
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We now choose the state 02 = 0 (which corresponds to d , . ) as the

reference state, and expand af/8, Into Taylor series about this state;

i. e. f 0f + .. where fop ft .. are
1 0 1 2 22 320'

constants if geometrically similar shapes (same 1) are considered.

Substitution of this series Into Eq. (A) and truncation of the series

after the linear term provides:

( 2E'Gf 1/2 (3N =1 fl J ~ (A3)
'N j fIc f + f0d

1/2
This yields Eq. (7) if one denotes do= f1cf/fo and Bfu= (2E'Gf/f1c£ .

It may be noted that a more general size effect law, N=

Bf u (l+r)-/2r, with an additional parameter r [14], can be derived under

some less restrictive assumptions. However, fitting of test data for

concrete specimens of various geometries indicates the optimum value to

be rul.

Energy Explanation of Size Effect Law. - It is instructive to give

also a simple energy explanation of the size effect. Consider the

uniformly stressed specimen of width d In Fig. 12, in which a crack of

length aO, with a fracture process zone of width h, propagates from the

left. The width h Is a material property; h = Kcf where K = constant. It

may be imagined that the formation of a crack band of thickness h reduces

2,to zero the strain energy density a/ZE' in the cross hatched area. When

the crack extends by Aa, the additional strain energy that Is reduced

comes from the densely cross-hatched strip of horizontal dimension Aa

(Fig.12). If the failure modes are geometrically similar, then the larger

the panel, the larger is the crack band at failure. Consequently, the

area of the densely cross-hatched strip Is also larger; It equals Ma +

34



2kaAa where k = constant depending on the shape of the structure. This

illustrates that, for the same a N' a larger structure releases more

stored energy into the same extension Aa of the crack. But since the

energy that can be dissipated by the crack extension Aa Is independent of

the structure size, the aN-value for a longer specimen must be smaller;

hence the size effect. To quantify this argument, the energy released

from the densely cross-hatched strip (per unit thickness) is

20N
S 8 ( a N a = G (A4)
b aa ~-(Aa+2k 0  Mr f

Solving for ON, one gets Eq. (7) with the notation do = h/2kao, Bfu =

(2E'Gf/h)1/ 2 where a0 = ao/d = constant.

Generalization of Size Effect Law. - Some test results (19] indicate

deviations from the size effect law for very small sizes. That there

might be some discrepancies for very small sizes is suggested by the fact

that there are two formulas for the brittleness number (Eqs. 11 and 12)

and two ways to get size effect parameters. One uses both the LEFM

characteristic Gf (pertinent to d 4 w ) and the plastic characteristic

Bfu (d 4 0). The other one only uses crack characteristics , Gf and cf (d

4 O). A simple empirical generalization, which makes an appreciable

difference only for sufficiently small sizes, can be introduced by

replacing Eq. (5) with:

1/2 
d+c0

'N cEG + 0 (A+5)

in which TN and d are defined by Eq. (6), and its three parameters (E'Gf,

Cf, c0 ) can be obtained by nonlinear regression analysis of the test
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data. The extra parameter, co, determines the location of the horizontal

1/2asymptote (Fig. 13), which is given by TN = (E'Gf/c0 /) . Considering

this horizontal asymptote and Eq. (6), and writing the plastic limit load

as P - cpbdftt one obtains:

=1/2 2 ,(oco

f =  g (A)c

where c depends on geometry and the material model used in plasticP

analysis. Eq. (A6) enables estimating t0 and ft only from size effect

test data. A broader range of test data would be needed to determine all

three parameters by regression. Short of that, c0 can be determined if

the tensile strength, ft. in the fracture process zone, representing the

maximum value of bridging stresses, is known or determined separately

from other types of tests (which is not an easy task).

Consider for example a very small three-point bend specimen (Fig.4),

to which plastic limit analysis can be applied. Since the compression

strength (in the brittle materials) is much larger than ft, the stress

throughout the ligament is uniform and equal to ft, except at the top

face which can sustain a large compression force. Thus, as d 4 W, the

bending moment in the ligament is Mu = f tb(d-a ) 2/2, which yields Pu =

S2ft(1-M )2bd2 /L; then cp = Pu/bdft M 2(1-a) 2d/L. (Note that the

value of c is twice (34] the value obtained by plastic analysis of aP

beam with equal yield stresses in tension and compression.)

By assuming a crack bridging model with a specific form for b (a).

ft can be related to cf (see Section VI), which means the three

parameters (E'Gf, cf and c ) in Eq. (5A) cannot be independent. By

accepting E'Gf as an Independent parameter, c0 and cf can be related as
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co = gc f where g will depend on the form of Ob(6) and the geometry of the

structure. As an example, for the linear softening curve b(S) for which

Cf= 0.420t0 [311, we obtain ji = Co/cf = 2.384/c2g'(a 0 ) using Eq. (A6).

Fig. 13 is plotted for g = 0.211 which corresponds, for example, to a

three-point bend specimen with a linear softening curve, and with L/d = 4

and a0 = 1/3 (from which c p= 2/9 and g'(aO) = 229).
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Basic Notations

a, a0  Effective and initial crack lengths

b Width of specimen

c Effective process zone length, c = a - a0

cf Limit of c as d 4 w, a material parameter

d Characteristic size (dimension) of specimen

d Intrinsic size of structure, Eq. (6)

E' Modulus of elasticity

f t Local tensile strength in softening models, a material parameter
fu An arbitrary measure of strength

Gc  Apparent fracture energy

Gf limit of Gc as size approaches to infinity, a material parameter

Kic Apparent fracture toughness

Kif Limit of K as d 4 a, a material parameter

L Span of the beam

Ligament size

= E'Gtf/ , a material length parameter

f Length of process zone

P Maximum loadu
R(c) Resistance to crack growth (critical energy release rate)

u Load-point displacement

a, (X 0 Relative effective and initial crack lengths (= a/d, a0/d)

9Brittleness number

Ir. Nominal stress at maximum load, Eq. (1)

T N  Intrinsic nominal stress at maximum load, Eq. (6)
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Table I. Test Data of McKinney and Rice (1981)

Material d b L a 0 P

(mm) (mm) (mm) (mm) (N)

31.7 25.2 127.0 7.2 489.3
31.7 25.4 127.0 6.3 627.2
25.6 25.5 101.6 4.0 609.4
25.3 25.5 101.6 4.8 582.7
14.9 12.0 59.4 3.5 193.5
15.0 12.0 59.4 3.6 175.3
15.0 12.4 59.4 3.5 196.2
15.0 12.2 59.4 3.3 195.7
11.6 11.7 46.7 1.9 200.2

SiO2  11.6 11.7 46.7 1.9 173.9
11.7 11.7 46.7 2.2 177.9
11.7 11.7 46.7 2.0 207.3
4.8 4.8 19.3 1.3 31.6
4.8 4.8 19.3 0.9 44.0
4.8 4.9 19.3 1.4 28.5
4.8 4.8 19.3 1.1 34.7
4.8 4.8 19.3 1.4 36.0
4.8 4.8 19.3 1.2 34.2
4.8 4.8 19.3 1.8 26.2
4.8 4.8 19.3 1.1 27.1

36.8 36.6 149.4 4.8 6316.2
37.3 37.6 149.4 4.8 9429.8
17.1 17.1 69.1 2.3 1610.2

C 17.1 17.2 69.1 2.5 2090.6
17.3 17.3 69.1 2.3 1934.9

7.2 7.2 28.7 1.3 282.4
7.2 7.2 28.7 1.5 342.5
7.2 7.2 28.7 1.6 275.8
7.2 7.2 28.7 1.5 291.3

36.6 37.3 149.4 4.8 3602.9
37.3 37.1 149.4 4.8 3958.7
17.4 17.5 57.6 2.4 1178.7C 17.0 16.5 67.6 2.4 1014.1
16.3 17.5 67.6 3.4 902.9

7.2 7.2 28.7 1.6 202.4
6.7 6.7 28.7 1.4 160.1
7.2 7.2 28.7 1.6 224.6
7.2 7.2 28.7 1.6 197.9
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Table II. Results for Data of McKlnney and Rice (1981)

Material Objective K if . wKIf cf
Function If

_(MPaV) (mm) % % % .
TN , Eq. 5 0.71 0.61 12.1 10.6 - -

SIC2 K i, Eq.15 0.68 0.45 12.2 10.4 - -

2 I c
./-N Eq.17 0.63 0.12 13.8 11.5 4.1 200

I/Kc, Eq. 18 0.70 0.63 12.3 10.7 8.9 42.0

rN 9.64 21.33 13.9 16.1 - -

SiC Ki 8.48 15.81 14.0 16.1 - -

CN-137 I/ 2  7.61 13.04 14.3 16.5 49.6 102
TN

1/K 2 11.71 34.71 14.2 16.3 178 360

TN 2.33 1.36 5.3 4.7 - -

SiC Kic 2.29 1.26 5.3 4.7 - -

iCN-163 i/TN 2.26 1.18 5.4 4.7 3.7 21.1

l/K c 2.33 1.39 5.3 4.7 7.0 23.0
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A..APPENDIX A3

Title no. 85-M32

Effect of Temperature and Humidity on Fracture Energy
of Concrete

by Zdenek P. Bazant and Pere C. =rat

Fracture experiments were conducted at temperatures from 20 to 200 obviously requires knowledge of the size effect law
C (68 to 392 F) to determine the dependence of the Mode I fracture which has to be used to extrapolate the test results to
enery of concrete on temperature as well as the specific water con- infinite size. Although the exact size effect law is un-
tent. The fracture energy values were determined by testing geometri.
callv similar specimens of siZes in the ratio 1:2:4:8 and then applying known, the approximate Ba~ant's law" has been found
Ba*ant's size effect law. Three-point bend specimens and eccentric tO be sufficient in view of the inevitable statistical scat-
compression specimens are found to yield approximately the same ter of concrete.'' ° " 4

fracture energies, regardless of temperature. To describe the temper- Measurements of concrete fracture energy based on
ature dependence of fracture energy, a recently derived simple for- extrapolation to infinite size were made by Ba.ant,
mula based on the activation energy theory (rate process theory) is
used and verified by test results. The temperature effect is deter- Kim, and Pfeiffer. ' Ba~ant and Pfeiffer" experimen-
mined both for concrete predried in an oven and for wet (saturated) tally demonstrated that specimens of very different
concrete. By interpolation, an approximate formula for the effect of types, including the three-point bend specimens, edge-
moisture content on fracture energy is also obtained. This effect is notched tensile specimens, and eccentric compression
found to be small at room temperature but large a: temperatures close specimens, yield approximately the same fracture en-
to 100 C (212 F). seies il prxmtl h aefatr nergy values, as far as the typical scatter exhibited by
Keywords: concretes; cracking (fracturing); energy: humidity: moisture con- concrete permits one to discern. As for the effect of
tent; temperature. specimens size on fracture energy, none can be present

due to the very nature of this fracture energy defini-
While heating in metals causes abrupt increases of tion.

fracture toughness, due to brittle-ductile transitions . The availability of a measurement method that yields
which change the fracture mechanism, the fracture unique values of fracture energy makes it meaningful to
toughness of purely brittle materials such as glass, ce- study various factors that influence fracture energy.
ramics, graphite, and rocks is known to smoothly de- The objective of this study is to examine the effect of
crease with increasing temperature'". For concrete, the temperature as well as the related effect of humidity.
determination of the influence of temperature on the The values of fracture energy need to be known to pre-
fracture energy has been hampered by the fact that un- dict brittle failures of concrete structures on the basis of
til recently an unambiguous definition and method of fracture mechanics, which promises to give more accu-
measurement of the fracture energy itself was unavail- rate results than the methods of limit analysis.
able. The basic classical measurement methods, such as
the work of fracture method proposed for concrete by
Hillerborg et al. 4' - and adopted by The International EXPERIMENTAL INVESTIGATION
Union of Testing and Research Laboratories for Mate- The test specimens were beams of constant rectan-
rials and Structures (RILEM) or the methods based on gular cross section loaded at three points [Fig. l(a)]. To
compliance or crack opening displacement measure- determine the size effect, geometrically similar speci-
ments, have not been found to yield the same fracture mens of various depth d were used. The depths were d
energy values when specimens of significantly different
sizes or shapes were used.

Recently, however, a fracture energy definition that
Received Feb. 4, 1987, and reviewed under Instituce publication policies.

leads to unique values has been proposed." ' The frac- Copyright 0l 1988. American Concrete Institute. All rights reserved. including
ture energy is the specific energy required for fracture the making of copies unless permission is obtained from the copyright propri-

etors. Pertinent discussion wilt oe published in the May-June 1989 ACt Mate-
growth in an infinitely large specimen. This definition nts Journal if received by Feb. 1, 1989.
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= 1.5, 3, 6, and 12 in. (38.1, 76.2, 152, and 305 mm),
while the thickness was b = 1.5 in. (38.1 mm) for all
the specimens. The length-to-depth ratio was Lid =
8:3 and the span-to-depth ratio was tld = 2.5, for all _.6 _d
specimens. One notch of depth d/6 and thickness 0.1
in. (2.5 mm) (same for all specimens) was cut with a 8d/3
diamond saw three weeks after the specimens were
stripped from the molds.

To check for a possible effect of specimen type, ad-
ditional specimens of the same shape were tested in ec-
centric compression. These specimens, which had two
symmetrical notches of depth d/6 and thickness 0. 1 in.
(2.5 mm) [Fig. 1(b)], included only specimen sizes d =
1.5, 3, and 6 in. (d = 12 in. would not fit the available
oven).

From each batch of concrete, one specimen of each d
size as well as three control cylinders for compression
strength, 3 in. (152 mm) in diameter and 6 in. (305 mm) Fig. 1- Test specimens used: (a) three-point bend spec-
in length, were cast. The means and standard devia- imens; and (b) eccentric compression specimens
tions of the compression strengths after 28 days of
moist curing are given in Table 1. Table 1 - Compression strength of concrete (on

All specimens were cast with the side of depth d in 3 x 6-in. cylinders) in psi*
the vertical position, using a water-cement ratio of 0.6 Mean Standard

and a cement-sand-gravel ratio of 1:2:2 (all by weight). Test series f,' deviation s

The maximum gravel size was d, = 0.5 in. (12.7 mm) 3-point bend. dry, 20 C 5550 36
3-point bend, dry. 65 C 5585 139and the maximum sand grain size was 0.19 in. (4.8 3-point bend, dry, 120 C 4975 90

mm). The aggregate consisted of crushed limestone and 3-point bend, dry, 200 C 5000 95

siliceous Illinois beach sand (Lake Michigan). Portland Eccentric compression, dry, 20 C 5410 78
Eccentric compression, dry, 65 C 5250 59cement C 150 (ASTM Type 1), with no admixtures and Eccentric compression, dry, 120 C 5075 117

no air-entraining agents, was used. Eccentric compression, dry. 200 C 5075 90
The fracture specimens were removed from the ply- 3-point bend, wet, 65 C 5770 55

wood forms after one day and subsequently cured until 3-point bend, wet, 90 C1 5725 84
about 2 hr before the test in a moist room with 95 per- • I psi - 689S Pa.

a Corrected for age; measured was f = 6035 psi, s = 5 psi at 41 days.
cent humidity and a temperature of 25 C (77 F). Three ,Corrected for age; measured wasjf - 5990 psi, s - 88 psi at 41 days.
identical specimens were cast simultaneously from each
successive batch for each type of test. The age of the centric compression specimens. The temperatures in
specimens at the time of the test was 28 days, except for these tests were 20 C (68 F), 65 C (149 F), 120 C (248
the specimens tested in the hot water bath. For these, F), and 200 C (392 F). Each of the tests started with
the tests had to be postponed to the age of 41 days due preheating under no load in an oven. The temperature
to certain scheduling problems. in the oven was raised gradually over a period of about

The fracture tests were carried out at two types of 1 hr to the temperature of 120 C, which was then kept
humidity conditions - dry and wet. The dry tests in- for 3 hr. The specime were not sealed and may be ex-
cluded both the three-point loaded specimens and ec- pected to have lost all their evaporable water. After this
ACI Materials Journal / July-August 1988 263



ternative to drying the specimens without heating is
hardly feasible. Simplified calculations showed that the
previously mentioned heating rates were slow enough to

(a) specimen loading shaft avoid development of high thermal stresses.
The wet tests included only three-point bend speci-

heating mens. Each test started by placing the specimens into a
elements water-filled tank [Fig. 2(b)] with the water at room

temperature. The temperature of the water in the tank
was raised gradually, at the rate of about 50 C/hr (90
F/hr), to the desired test temperature and was then kept
constant for 1 hr before the fracture test in water was

' " ' -started.

The temperatures of the wet tests were 65 C (149 F)
and 90 C (194 F). No wet tests were conducted at room

l n stemperature, since the response of wet specimens at
specimen o ade room temperature may be assumed to be the same as

wate that of previously tested unsealed and undried speci-
(b) - mens, loaded right after curing. This assumption is jus-

tified by the fact that at room temperature the mois-
ture diffusion is so slow that the environmental humid-
ity cannot affect the state of concrete in the bulk of the
specimen during the short time of exposure. At 120 C
(248 F), by contrast, the diffusivity of moisture in con-
crete is about '200 times higher than it is at 90 C (194

heatng elements- / F), and about 3000 times higher than at 20 C (68 F). 6

Therefore, the environmental relative humidity quickly
Fig. 2-Arrangement of tests: (a) in an oven; and (b) in spreads through the entire specimen.a water bath No wet tests could be carried out at temperatures

over 100 C (212 F), since the specimen could not be
kept wet unless a pressure chamber was used. How-

3 hr period, the temperature was gradually raised or ever, this would represent a different type of test.
lowered at the average rate of about 50 C/hr (90 F/hr), All the tests were carried out in a closed-loop MTS
until the desired temperature of the fracture test was machine. Only the maximum load values were needed
reached. The specimen was then loaded to failure while to calculate the fracture energies. The loading rate was
in the oven [Fig. 2(a)]. The loading shaft of the ma- such that the time to failure was 3 to 5 min for all spec-
chine protruded through the wall of the oven, and the imens.
thermal insulation around the shaft caused no appre- All the dry tests were performed under stroke-con-
ciable friction. trol at a constant displacement rate. For certain extra-

According to the linear heat conduction equation and neous reasons, the wet specimens had to be tested un-
the known thermal diffusivity of concrete, it was cal- der load control; therefore, they failed right at the
culated that, after a sudden exposure to a different maximum load. Impossible though load-controlled
constant temperature, not more than I hr is needed for testing is for other types of fracture tests (e. g., RI-
the temperature to become uniform within the speci- LEM's work of fracture test), it is nevertheless accept-
men of thickness 1.5 in. (38.1 mm). Therefore, the able for the present method since the post-peak re-
heating times used must have been sufficient. The heat- sponse is not needed to determine the fracture energy.
ing time in the oven must have also sufficed, since a Theoretically, if the specimens exhibit high statistical
uniformly dry state throughout the specimen thickness heterogeneity, load-controlled tests can yield a lower
was obtained. This is not only well known empirically maximum load than the displacement-controlled tests,
but is also justified by the measurements and theory in but, according to the analysis of Balant and Panula,"
Reference 16, in which it was found that the diffusivity the differences that may reasonably be expected in the
of moisture in concrete increases about 200 times when maximum load value are insignificant (under 3 per-
the temperature exceeds 100 C (212 F). cent). On the other hand, if the objective were the post-

Although concrete drying by heating in an oven has peak descending load-deflection curve, then load-con-
been a standard practice in the investigations of creep trolled tests would of course be impossible.
and other properties, this procedure might, neverthe- The measured maximum load values P are given in
less, cause some damage such as microcracking and, Table 2 and the 28-day compression strengthsf, for in-
thus, possibly affect the fracture test results. However, dividual batches of concrete in Table 1. The 28-dayf'
the fact that after such drying, the fracture energy of values for the wet tests were not directly measured but
concrete becomes much higher than for a wet specimen were calculated from the compression strength f" (41)
at the same elevated temperature suggests that possible measured at the time of these tests, at which the age of
damage due to heating is probably not serious. The al- concrete was 41 days. The adjustment for age was
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based on the approximate formula' Table 2 - Maximum loads at failure
Load at failuref" (t) = f" (28) [1 + 0.2771og(t/28)] L---P. lbfrom whichf (28) o.956f (41) Type of test Depth, in. I I 2 3 Average P. lb

Three-point bend 1.5 390 420 375 395
Dry, 20 C 3.0 645 690 675 670

CALCULATION OF FRACTURE ENERGY FROM 6.0 990 1035 1080 1035
SIZE EFFECT 12.0 1710 1689 1729 1709

The size effect is the most important difference of Three-point bend 1.5 515 375 440 4.43
fracture mechanics from the failure theories based on Dry, 65 C 3.0 715 565 670 650

6.0 1090 955 1155 1066
plastic limit analysis. The size effect is understood as 12.0 1595 1430 1600 1542
the dependence of the nominal stress at failure a on a Three-point bend 1.5 348 384 366 366

characteristic dimension of the specimen d when geo- Dry, 120 C 3.0 530 594 486 537
6.0 954 840 864 886

metrically similar specimens or structures are consid- 12.0 1296 1368 1332 1332
ered (a, = P/bd, where P = maximum load and b = Three-point bend 1.5 304 322 320 315

specimen thickness). For stress-based failure theories Dry. 200 C 3.0 540 480 510 510
6.0 792 744 816 784

such as the plastic limit analysis or elastic allowable 12.0 1180 1190 1200 1190
strength design, there is no size effect, i.e., oN is con- Eccentric compression 1.5 675 665 690 677
stant. For classical linear elastic fracture mechanics, o, Dry, 20 C 3.0 1180 1160 1260 1200
- d-1. Due to the influence of a relatively large mi- 6.0 2040 2195 1945 2060

crocracking zone that blunts the crack front in con- Eccentric compression 1.5 855 715 591 721
the size effect is intermediate between plasticity Dry. 65 C 3.0 1280 1223 100 1194crete, 6.0 2100 2010 1740 1950

and linear fracture mechanics and represents a transi- Eccentric compression 1.5 740 775 680 732
tion from the former to the latter as the size is in- Dry, 120 C 3.0 1140 1240 1215 1198
creased. This transition may be approximately de- 6.0 1860 1920 1720 1833

scribed by Ba ant's size effect law:" q, = Bf,' (1 + dl Eccentric compression 1.5 648 684 720 684
in which B, = empirical constants and do -- Dry, 200 C 3.0 960 960 900 940

6.0 1545 1705 1625 1625
maximum aggregate size. According to this law, the Three-point bend 1.5 342 390 408 380
plot of Y = (f,'/UN)' versus X = did. (relative size) Wet, 65 C 3.0 545 546 586 559
should be a straight line Y = AX + C, with C = 1/B2  6.0 811 780 732 774shul b astaiht12.0 1250 1205 1210 1222
and the slope A = C/k. Thus, a linear regression of

Three-point bend 1.5 290 350 290 310
the test results in the plot of Y versus X may be used to Wet, 90 C 3.0 560 520 575 552
determine A and C, from which the size effect law pa- 6.0 640 690 745 692

rameters may then be calculated as B = C - I and k0 = 1 12.0 1055 1060 1010, 1042

C/A. I in. - 25.4 mm. I lb. = 4.448 N.

These regression plots also yield statistics of the er- three-point specimens used, g(a) = 6.37, and for the
rors, i.e., the deviations of the measured data points eccentric compression specimens, g(a.) = 1.68.
from the size effect law. The coefficient of variation, The tensile strength was not measured but was esti-
defined as x= {[-(," _ Y,)2]/(N - 2)}/Y where mated from the formulaf,' - 6(f')' wheref" andf,' are
)',- Y, are the vertical deviations of data points I'"' in psi, f = compression strength. A possible error in
from the regression line, N is the number of all the data the f'-value, however, has no effect on G. since the A-
points, and 7 = (E Y,)/N = mean of all measured Y,, value obtained by regression is proportional to!f,' if the
is given in Fig. 3, 4, and 5, as is the correlation coeffi- ordinate is taken as Y=f,.
cient r. Fig. 6 is a photograph of a typical set of specimens

From the size effect law, it follows"''0 that the frac- of different sizes. Fig. 7 shows typical specimens in-
ture energy G, defined as the energy release rate re- stalled in the heating oven, and Fig. 8 shows typical
quired for crack growth in an infinitely large specimen, specimens installed in the water bath.
may be calculated from the formula The maximum loads measured are plotted in Fig. 3

through 5. The plots on the right demonstrate that the
&0).rId ()•measured aN agrees quite well with the size effect law,= AE , (1) which is shown as the solid curve. This agreement jus-

tifies the use of the size effect law. The plots on the left
in which cf, = ao/d; a, = notch length; d = beam show the linear regressions that yield the optimum val-
depth; E, = modulus of elasticity of concrete; f,' = di- ues of parameters B and k. The fracture energy values
rect tensile strength of concrete; A = I/(B2l) = slope calculated according to Eq. (1) from the Slopes A of
of the regression line as already defined; g(co) = non- the regression lines given on the left of Fig. 3 through
dimensional energy release rate of the specimen ac- 5 are tabulated in Table 3.
cording to the linear elastic fracture mechanics, which Since the wet specimens had to be tested at the age of
can be found for the basic specimen geometries in 41 days rather than 28 days, a correction for the age
textbooks"' and handbooks,' and can be, in general, difference became necessary. The fracture energy val-
determined by linear finite element analysis. For the ues were transformeu to 28 days according to Balant
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Fig. 3-One set of three-point bend specimens tested

and Oh's approximate formula = (2.72 + 0.0214 = stress intensity factor; and fK) = empirical mono-

f;' ) f,'= do/E. The values in Tables 1 and 3 as well as tonically increasing function. Recently, Evans:' and
those plotted in the figures are all transformed to 28 Thouless et aln verified for certain ceramics a special
days. form of this formula

ACTIVATION ENERGY FORMULATION = v, (K/K,)" e -ur (2)
' It is generally accepted that fracture is a thermally

,. activated rate process. This means that the atomic bond in which v, and n may be approximately considered as
ruptures that constitute the mechanism of fracture are constants characterizing the given material and K, =
provoked by the energies of thermal vibrations n These critical value of K (fracture toughness). Since concrete
energies are statistically distributed, as described by is a ceramic material, Eq. (2) may be expected to apply
Maxwell distribution, and a rise in temperature in- also. This equation is not exact but approximate only,
creases the probability (or frequency) that the atom's for two reasons: 1) the proportionality of a to K' is
energy would exceed the activation energy barrier of the empirical; and 2) more than one mechanism of atomic
bond. Therefore, a rise in temperature causes an in- bond rupture, with different activation energies, might
crease in the rate of growth of fracture, which gener- be involved, and the type of this mechanism might
ally follows a formula of the type a = f(K) exp( - U! change with temperature.
RT), 3 where U = activation energy of bond rupture; R Due to the relations K = (GE,) and K, = (G;IEc)y
= universal gas constant; T = absolute temperature; K where 0 = rate of energy release from the structure
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Fig. 4- Test results for dry eccentric compression specimens

into the fracture process zone,'" Eq. (2) may be re- pendent fracture description prevails in applications. In
written as fact, what is known as fracture mechanics is a time-in-

[ R ( G dependent theory. So, deduction of the consequences of

= v, exp - - (3) Eq. (2) for time-independent fracture description isLd/ R\T T needed. This was done in Reference 8.
where T = chosen reference temperature (normally The choice of the reference temperature T in Eq. (3)
Z, = 298 K) and G f = value of fracture energy G at T. is arbitrary. If temperature T is chosen as the reference
With regard to the finite size of fracture process zone temperature, then according to Eq. (3) the crack growth
in concrete, the relation K=(GE,)" might at first be rate a at temperature Tis simply expressed as
deemed inconsistent since it is based on linear elastic
fracture mechanics. It is nevertheless consistent since, a v,(G/Gf)" (4)
according to the size effect.law, G is defined as the
fracture energy of an infinitely large specimen, for (because IIT - IT = 0 in this case). G represents
which linear elastic fracture mechanics does apply. the fracture energy at temperature T, while G} is the

Eq. (2) or (3) may serve as the basic relation for fracture energy at temperature T.
crack growth in time. Although the time-dependent The crack growth rar, expressions referred to To or to
fracture description in terms of the crack growth rate is T must be equivalent. Equating the expressions in Eq.
no doubt physically more fundamental, the time-inde- (3) and (4), one obtains Balant's' approximate formula
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Fig. 5-7"est results for wet three-point bend specimens

~the curves of Eq. (5) plotted for the optimum material

parameter values of y' and G; obtained by linear regres-
-.7. ... ..." '" . :....:.._._;.:: :sion. These values are (I N/m = 0.005710 Wb in.):
!':i:.-!. ,.. ,,: ':'Three-point bend, dry: Gf" = 34.48 N/m, -y = 581 K

_ . -- ,'Eccentric compression,

dry: G7 =38.39 N/m, y = 623 K
Average of dry tests: 07 = 36.38 N/m, -f = 602 K
Three-point bend, wet: G = 33.03 N/m, y = 1875 K

Note that the differences between the two specimen
shapes (dry tests) are statistically insignificant, in view

Fig. 6-One set of three-point bend specimens tested of the usual scatter for concrete. They are ± 5.5 per-
cent for GOand ± 3.5 percent for -t, relative to the

G0 = G; exp (fy/T - 3y/T) (5) means. Since there is no significant difference between
the eccentric compression and three-point bend dry

in which tests, a combined line for both is plotted in Fig. 9(b),
according to Eq. (5). The fracture energy G.,',, at ref-
erence temperature To = 20 C (68 F) is obtained by lin-

-y = 2U/nR (6) ear regression using the combined data of both tests.

The portion of the wet specimen curve that lies above
-y is a constant characterizing the given material, the temperature of 100 C (212 F) in Fig. 9(a) is strictly

Eq. (5) allows a simple determination of material pa- hypothetical because concrete cannot hold evaporable
rameters since it may be written in the form Y = -fX water above 100 C (unless the test was made in a pres-
+ b where Y = In G; X = 1/T; b = In 0; - -y/T. surized chamber, but that would change G. as well).
So the values of y and b may be found as the slope and Therefore, wet fracture energy for static loading above
the Y-intercept of the regression line in the plot of In G 100 C is physically meaningless.
versus 1/T, and G; = exp(b+'r/T). For wet concrete at temperatures below about 20 C,

The values of activation energy U cannot be deter- Eq. (5) is probably inapplicable since the wet specimen
mined from the present types of experiments. Accord- curve in Fig. 9(a) would pass above the dry specimen
ing to Eq. (6), one would also need to determine expo- curve. This would contradict the fact that the presence
nent n. This would require measuring the rate of of moisture is known to weaken the bonds in hydro-
growth of the crack length at various load values. phylic porous solids.

The fracture energy values obtained experimentally at Based on the previous results, the effect of the eva-
various temperatures are plotted in Fig. 9(b) as the data porable water content of concrete w per unit volume of
points. The linear regression plot, shown in Fig. 9(a), concrete may be estimated. T.et I. and -y, bc :he values
demonstrates that the present test results indeed fall of -' at w = 0 (dry state) and at w = w, = saturation
quite close to a straight line in this plot. This confirms water content (wet state). As a crude estimate, we may
the validity of Eq. (5). The diagram on Fig. 9(b) shows assume a linear variation of -y as function of w. This
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yields for any water content the approximation that a uniform moisture state is easily obtained and
easily maintained at temperature changes.

w That the activation energy should depend on the' = ̂to + ('I- 'o)- (7)
W, moisture content is not surprising. It is well established

According to the results shown Yo = 602 K and3', =

1875 K for the concrete tested.
The dependence of 'y on w may be physically ex-

plained by a dependence of the activation energy U on
w. Such a dependence is reasonable to expect since it is
known that the activation energy of concrete creep de-
pends on w. According to Eq. (7), we have

W
U= Uo + (U - Uo)- (8)

W,

with

Uo1= 2(nRyo), U,= z(nR3y,) (9)

The linearity of Eq. (7) and (8) with respect to w is
of course a hypothesis. To determine -y at intermediate
water contents would be more difficult than the present.........
tests. Providing control of the environmental relative
humidity at arbitrary temperature would not be diffi-
cult; however, creating and maintaining a uniform
va,"- of Fome intermediate water content in the speci- .. ],
men would. It takes a very long time to dry a specimen
to a uniform moisture content, and due to the coupling _
of temperature and humidity changes, it appears rather _._
difficult to maintain a constant and uniform moisture *".-- --* ' "
content during the test. It would probably be necessary
to make inferences from tests on specimens that are in
a transient hygrothermal state. The advantage of the Fig. 7-Loaded specimens in an oven, installed in the
tests at either perfect saturation or perfect dryness is testing machine

........ ..

4z4

Fig. 8-Loaded specimens in the water tank
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Y ?X bTable 3 - Fracture energy values obtained from~~~~tests, N/m" o * 0

20C 65C 90C 120C 200C
Test Age (68 F) (149 F) (194 F) (248 F) (392 F)

3-point bend, dry 28 35.24 25.58 - 20.87 16.39

Eccentric compression, dry 28 3901 28.4: - 22.06 7.36
U , - - t=.,Mc Cempr.., di, 3-point bend, wet 28' 33.301 13.'2' 9.79' - -

Thr.-P.It 0ndlnq, dry 3-point bend. wet 41 14.57 10.40 -
-9-- Thr..-P., 8eding. . t .1.014.57 10.40

TEST _y__ G1 r I N/m = 0.005710 lb./in.
STEST 1 r , Corrected from age 41 days.Izl 3P2 sa 34.4 0.9943 0.0190 From Ba2ant and Pfeiffer, not in water bath but in air immediately after

EC $23 38.39 0.9273 0.0136 removal from moist room.

(3) 3,9 1875 33.03 0.9,86 0.0357

tonically and smoothly as T increases. For concrete
T-' (7-) near saturation water content, this dependence is more

pronounced than for predried concrete.
1.1 3. The effect of specific water content on the frac-

, =ture energy is small at room temperature but grows as
.9G = 36.48 N/rn temperature increases and is very large at temperatures

T,= 20"*C close to 100 C (212 F).
To = 24. The measured dependence of Mode I fracture en-

•ergy on temperature agrees with Ba2ant'sr formula [Eq.
D y o(5)] based on the activation energy theory (rate-process

4"a theory).
0.- 5. Very different types of specimens such as the

three-point bend and eccentric compression specimens
0.2. yield approximately the same fracture energy vtlues at

(b) .various temperatures. This indicates that the present
0., results for the fracture energy should represent true0 40 is1 fig lid aid ,240

Temperature (*C) material properties.

Fig. 9-Experimental results and theoretical formula ACKNOWLEDGMENTS
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SIZE EFFECT IN FATIGUE FRACTURE

By Zdentk P. Ba±ant and Kangming Xu

Center for Advanced Cement-Based Materials
McCormick School of Engineering and Applied Science

Northwestern University, Evanston, Illinois 60208

ABSTRACT: Crack growth in geometrically similar notched concrete

specimens of various sizes due to load repetitions is measured by means of

the compliance method. It is found that Paris law, which states that the

crack length increment per cycle is a power function of the stress

intensity factor amplitude, is valid only (1) for one specimen size or (2)

asy ptotically for very large specimens. To obtain a general law, Paris

law is combined with the size effect law for monotonic fracture proposed

previously by Want. This leads to a size-adjusted Paris law which gives

the crack length increment per cycle as a power function of the amplitude

of a size-adjusted stress intensity factor. The size adjustment is based

on the brittleness number of the structure, representing the ratio of the

structure size to the transitional size. The latter size is indicated by

the experiments to be much larger than that for monotonic loading, which

means that the brittleness number for cyclic loading is much less than the

brittleness number for monotonic loading. The crack growth is

alternatively also characterized in terms of the nominal stress ampltude.

In the latter form the size effect vanishes for small structures, while in

terms of the stress intensity factor amplitude it vanishes for large

structures. The curves of crack length vs. the number of cycles are also

calculated and are found to agree with data.

INTRODUCTION

Repeated loading causes cracks to grow. This phenomenon, called fatigue

fracture, has been studied extensively for metals and is now understood
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relatively well (e.g. Kanninen and Popelar, 1985; Broek, 1986; and Rolfe

and Barsom, 1977). For concrete, however, the knowledge of fatigue

fracture is still rather limited. Aside from fatigue studies outside the

context of fracture mechanics (e.g. Norby, 1958; Murdock and Kesler, 1958;

Stelson and Cerrica, 1958; Hilsdorf and Kesler, 1966; Kaplan, 1959; and

Avram et al.), fracture under cyclic loading was experimentally

investigated by Buluch et al.(1987), Perdikaris and Calomino (1987),

Suresh, Tschegg and Brockenbrough (1989), Suresh(1989), and Zhang et aL

(1987). These investigations indicated that Paris law for crack growth

under repeated loading (Paris, 1962; Paris, Gomez and Anderson, 1961; and

Paris and Erdogan, 1963) can be at least to some extent transplanted from

metals to concrete. However, one important aspect - the size effect - has

apparently escaped attention so far, as far as fatigue is concerned. The

objective of the present study is to investigate the size effect, both

experimentally and theoretically.
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FATIGUE TESTS OF SIMILAR NOTCHED BEAMS OF DIFFERENT SIZES

Two series of three concrete three-point-bend beam specimens of different

sizes were tested in a closed-loop servo-controlled (MTS) testing machine;

see Figs. 1 and 2. The ratio of cement : sand : aggregate : water in the

concrete mix was 1 : 2 : 2 : 0.6. The aggregate was crushed limestone of

maximum size 0.5 in. (12.7 mm). The sand was siliceous river sand passing

through sieve No. 1 (size 5 mm). Type I portland cement, with no

admixtures, was used. The specimens were cast in plywood molds with the

beam side face in a horizontal position. From each batch of concrete,

three beam specimens of different sizes (one of each size) were cast,

along with companion cylinders of diameter 3 in. (76.2 a) and length 6

in. (152 am) for strength measurement. After the standard 28-day curing of

the companion cylinders, their mean compression strength was f' = 4763 psi
C

(32.8 MPa), with standard deviation 216 psi (1.49 MPa). The average direct

tensile strength was estimated as P = 6 /7 = 414 psi (2.86 MPa), average
t C

Young's modulus as E = 57,000 = 3.93x10pli (27,120 MPa) (all in psi).c

An additional series of nine notched beam specimens of three different

sizes, three of each size, were cast from a different batch of concrete in

order to determine fracture properties under monotonic loading by the size

effect method.

The specimens of different sizes, both for cyclic tests and companion

monotonic tests, were geometrically similar in two dimensions, including

the lengths of their notches. The thickness of all the specimens was the

same (b = 1.5 in. = 38.1 ma). The beam depths were d = 1.5, 3 and 6 in.

(38.1, 76.2 and 127 am), the span was L = 2.5 d, and the notch depth was

a 0 = d/6 (Fig. 2).

The specimens were cast vertically (i.e.with the loaded side on top)

and demolded after 24 hours. Subsequently the specimens were cured in a
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moist room of 95% relative humidity and 79 F (26.1 C) temperature until

the time of the test. Just before the test, the notches were cut by a band

saw. When tested, the specimens were days old. During the test, the

specimens were positioned upside down, with the notch on top. The effect

of specimen weight was negligible. During the cyclic tests (as well as the

monotonic control tests), the laboratory environment had a relative

humidity of about 65% and temperature about 78 F (25.6 C). The crack-mouth

opening displacement (CHOD) was measured by an LVDT gage supported on

metallic platelets glued to concrete.

In view of the difficulty of optical and other direct measurements, the

crack length was measured indirectly, by the CMOD-compliance method.

Although some doubts existed, the validity of this method for concrete has

recently been confirmed by Swartz and Go (1984) and Perdikaris, Calomino

and Chudnovsky (1986). The procedure was as follows: (1) Mark the notch

lengths on the beam flank surface according to a logarithmic scale. (2)

Cut the notch at midspan by a band saw. (3) Mount the LVDT gage and set up

the specimen in the testing machine. (4) Apply the load (at the rate

0.0004 in./min.) and, after several load cycles between zero and maximum,

record (with an X-Y recorder) the plot of load vs. CMOD, from which the

specimen compliance is later calculated (the load is small enough so no

crack would start). (5) Remove the specimen from the machine, extend the

notch by sawing a cut up to the next mark, and repeat the procedure. An

example of the relevant portion of the calibration curve of specimen

compliance vs. the ratio of notch length to beam depth is seen in Fig. 3,

which shows the measured data points as well as the curve of finite

element results. Their deviation is within the range of normal

experimental scatter in concrete testing.

In the cyclic tests, linear ramp load and frequency 0.033 to 0.040 Hz

4



was used. In all the tests, the load minima were zero and the load maxima

were constant and equal to 80 % of the monotonic peak load for a specimen

of the same size.

TEST RESULTS

A grapher was used to continuously plot the load history (Fig. 5a) and the

CMOD history (Fig. 5b) in each cycle (only the terminal part of these

histories near failure is shown in Fig. 5). The effective crack length,

representing the coordinate of the tip of an equivalent elastic crack, has

been determined from the compliance given by the slope of the unloading

segment of the measured load-CMOD curve,according to the compliance

calibration curve shown in Fig. 3. Based on the effective crack length,

eqone can determine the equivalent stress intensity factor, K Ie. The

maximum loads measured in the companion monotonic tests are given in Table

1. The table also gives the values obtained previously (Baiant and

Pfeiffer, 1987) on the same type of concrete and the same specimens. The

fact the these previous values were nearly identical confirms

reproducibility. The measured curves of load P vs. CMOD are shown in

Fig.5.

According to the fatigue fracture theory (e.g. Broek, 1986; Kanninen

and Popelar, 1985), crack growth depends on the amplitude K r of the

stress intensity factor KI  for the current effective (elastically

equivalent) crack length, a. As is well known,

I b 1 N CD d

in which x = relative crack length, d = characteristic dimension of the

specimen or structure, b = specimen thickness, P = load, f(a) = function

depending on specimen geometry, which can be obtained by elastic finite

element analysis and for typical specimen geometries is given in

handbooks; for the present three-point bend specimens, f(x) = (1 - a)-3/2
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(1 - 2.5 a + 4.49 a2 _ 3.98 a3 + 1.33 a 4), as determined by curve-fitting

of finite element results (Gettu, Batant and Karr, 1989); and

oN = c P / bd (2)

where aN = nominal stress; and C = coefficient chosen for

convenience, for example so that a would represent the maximum stressn

according to the bending theory formula for the ligament cross section; in

that case cn = 3L/2(d-a0 ) = constant for geometrically similar specimens

of different sizes. If the crack length is very small (microscopic), i.e.

a X( d, then K a /71 , where a is the local macroscopic stressy

calculated as if there were no crack; but in our case, due to the notch,

the crack is not microscopic.

The fatigue test results are presented in Fig. 6, which shows the

relative effective crack length, a = a/d (calculated from the compliance

data), as a function of the number, N, of cycles, for each of the six

specimens tested (two of each size). From this figure, the measured points

in the plot of log(Aa/A&N) vs. log(AKI) have been constructed, as shown in

Fig. 7a for a series of three specimens, one of each size, and in Fig. 7b

for both series, two specimens of each size. Here AKI is the amplitude

of the equivalent stress intensity factor calculated on the basis of the

current effective crack length a (of course AKI = KI because the lower

load limit is 0 in the present tests); AN represents the increments

between the consecutive cycles number N = 10, 110, 210,...710, 760, 810,

820, 830,...900, 905, 910,...965, 966, 967,....974, and Aa are the

corresponding increments of a. The small, medium and large specimens

failed at M = 974, 850 and 882, respectively, for the first group, and at

N = 939, 1286 and 1083 for the second group. The units in Fig. 6 and 7 are

in.(25.4 am) for a and lb./in.3/2 (1.099 N cm-3/2 ) for K1 .

SIZE EFFECT IN PARIS LAW
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As demonstrated extensively for metals, fatigue fracture follows

approximately the empirical Paris law (Paris, Gomez and Anderson, 1961;

Paris and Erdogan, 1963):
Aa =C ( 131)

Ag (3)as K I£

in which C and n are empirical material constants; n is nondimensional

and, for reasons of physical dimensions, C has the dimension of length,

and K if = constant = fracture toughness. A in Eq.3 are the differences

taken over one cycle or a sufficiently small number AN of cycles. When the

range of AKI is very broad, the test results for metals deviate below the

plot of Eq. 3 for very low AK and above it for very high AKI (Kanninen

and Popelar, 1985), but for a broad enough range Eq.3 is good for metals.

According to Paris law, the plot in Fig. 7 would have to be a single

inclined straight line of slope a. This is seen to be indeed true for each

specimen of each size - see Fig. 7a; from the slope and intercept of the

regression line of the data points for each specimen one gets; n = 11.78,

log C = -40.2 (units in in. and lb.) for the smallest size, n = 9.97, log

C = - 36.0 for the medium size, and n = 9.27, log C = -34.8 for the

largest size, with the overall average n 10.57. The optimum fits by the

straight lines of slope equal to this average slope are shown in Fig. 8.

Fig. 8b shows the data for all the six specimens (two of each size)

compared to the same straight lines as in Fig. 8a. The fit is not exactly

optimum, but is still satisfactory. As we see, however, there are gross

discrepancies among various specimen sizes - not among the slopes n but

among the C-values (Fig. 8a,b). Thus, the Paris law is invalid for

concrete in general.

This is not really a surprising result, in view of the well-known

deviations of concrete behavior from linear elastic fracture mechanics

(LEF). For monotonic loading, these deviations are quite well described

7



in terms of the size effect law proposed by Batant (1984, 1986):

or = B fu (1 + ) -1/2, [3 = d / d0  (4)

(Fig. 8a) in which B and d0 are empirical constants characterizing both

the material properties and specimen geometry; f' is a measure of the

uutensile strength, e.g. £u £ t =direct tensile strength; and aI =

nominal strength = nominal stress at maximum (ultimate) load Pu, a =

CnPu/bd (Eq. 2). The meaning of d0 is the transitional size (dimension) of

the structure; for d > d0 (i.e. 9 0 1) failure is governed by LEFM while

for d << d0 (P V 1) failure is governed by strength theory (or plasticity).

For this reason, P is called the brittleness number (Batant, 1987; Batant

and Pfeiffer, 1987; Baant and Kazemi, 1989a,b). Eq. 4, describing a

transition from the size effect of plasticity (i.e. no size effect in

strength) to the size effect of LEFM (i.e. the maximum possible size

effect in strength), is only approximate; but the accuracy appears to be

sufficient for the size range up to 1:20.

Due to deviations from LEFM, the critical value KIc of stress

intensity factor, K I, at which the crack can propagate at monotonic

loading, is not constant but depends on specimen size and geometry. An

unambiguous definition of KIC (as well as of the corresponding fracture

energy G = KI 2/ E) can be given only in terms of extrapolation to a

specimen of infinite size (Batant, 1987; Batant and Pfeiffer, 1987). At

infinite size, the specimen geometry cannot matter because (1) the

fracture process zone occupies an infinitely small fraction of the

specimen volume so that the whole specimen is in an elastic state, and (2)

the near-tip asymptotic elastic field to which the fracture process zone

is exposed at its boundary is the same for any specimen geometry. Thus,

Kif = lim Kic for d - c (more generally, Kif could be defined as the limit

of Rice's J-integral).

8



To determine the size dependence of Kic, we first express Kic by

substituting P = P with P = aN bd/c into Eq. 1. Then, substituting Eq.

4 for (YN , we obtain (Fig.8b):

B fu yr Kd fal
Klc= - / +P = Ki (5)

Ic cn

in which K if is a constant expressed as
f(tx0)

K - Bf (6)If 'u 0 n

where we recognized that K1I is the fracture toughness as defined above

because it represents the limit of Eq. 4 for d -4 w or + v . Eq. 6,

derived in Ba~ant (1987) (see also Batant and Pfeiffer, 1987), means that

the fracture toughness can be obtained from the size effect law parameters

B and d0. These parameters, in turn, can be obtained if the values of

(fla) 2 , calculated from the measured peak values Pu of the curves in

Fig. 5, are plotted versus d. In this plot, the slope of the regression

line is 1/8d0 and the vertical axis intercept is 1/B. Linear regression of

the peak load values from the present monotonic fracture tests provided B

= 0.520, d0 = 2.86 in.(72.6 mm), from which K i= 73.5 lb./in.3 / 2 (1.099 N

cm-3/2 ).

Now, how should the size effect be manifested in fatigue fracture? The

monotonic fracture represents the limiting case of fatigue fracture as AKI

-# K at N - 1. If the value of AK is close to KIc, As/An must become

very large while KIc must at the same time follow the size effect law.

This can be modeled by replacing in Paris law (Eq. 3) the constant

fracture toughness Kif by the size-dependent equivalent fracture toughness

Kic given by Eq. 5. So a generalized, size-adjusted Paris law may be

w r i t t e n a s A &A Kn(Aa - C [- (7)
AN K ic

The transition size d in the size effect law (Eq. 3) applies only to

9



peak-load states at monotonic loading. For fatigue fracture, however, it

is unclear whether the value of the transitional size d0, needed to

calculate Kic (Eq. 5), should be constant and the same as for monotonic

fracture, or whether it should vary as a function of the ratio

P =AKi/K rr (8)

Assuming d0 = 2.86 in., same as for monotonic fracture, the optimum fit

of the present test data by the size-adjusted Paris law, Eq. 7, is shown

in Fig. 7c,d for the small, medium and large specimens by the dashed

straight lines. As one can see, the fit has improved substantially

compared to Fig. 7a,b, but not enough. This finding means that the

transitional size d0 cannot be constant but must depend on P K

Let us now assume that, for the present tests in which P = 0.8, the

value of d is 28.6 in., i.e. 10-times larger. Then the optimum fit of the

present test data becomes as shown by the three straight lines in Fig.

7e,f. The closeness of fit is now satisfactory.

According to Eq. 7, if log(Aa/AN) is plotted against log(AKIs), the

data points for the specimens of all sizes should have a common regression

line. Fig. 9 confirms that for d = 28.6 in. this is approximately indeed

SO.

As shown in Bafant and Kazemi (1989a,b), d0 is proportional to the

effective length of the fracture process zone. So the value of d deduced

from the present tests implies that the fracture process zone at load

cycling with amplitude 80 % of the maximum monotonic load should be about

10-times larger than it is for monotonic loading. Although the factor 10

might be too large to still accept equivalent LEFM calculations for the

present-size specimens, it nevertheless appears that the fracture process

zone is greatly enlarged by load cycling. Intuitively, this is not an

unexpected conclusion.
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CRACK GROWTH DEPENDENCE ON NOMINAL STRESS

Expressing AKI according to Eq. 1, Paris law may be written in terms of

the amplitude AN of the nominal stress:

Aca ) - N do5'=c( (9)
as N CnK i f J

where Z is a constant if the specimens are geometrically similar, and =

d/d0 . Likewise, after expressing KI  in Eq. 7 from Eq. 1, the

size-adjusted Paris law may also be written in terms of the nominal stress

amplitude:

A & - C p +V Aa ) n (10)
AN N

For very small specimen sizes, d C d 0 , this law simplifies as

A&C ATa) (!1

i.e., the size effect in fatigue fracture disappears. On the other hand,

for very large sizes, d C d0 , Eq. 10 asymptotically approaches Eq. 9 and

the size effect becomes the strongest possible.

The present data for the first series of fatigue specimens of

three sizes (one specimen per size), shown already in Fig. 7a,c,d, are now

plotted in Fig. 10a with log WN as the abscissa, and in Fig. 10b with

the logarithm of the size-adjusted nominal stress amplitude as the

abscissa. The three straight regression lines predicted by Eq. 11 are also

drawn.

Comparison of Fig. 10a with Fig. 7 reveals that, in terms of the

nominal stress amplitude, the effect of size is much weaker than in terms

of the stress intensity factor amplitude. This agrees with the

conventional wisdom that concrete structures are relatively insensitive to

fatigue. But for a sufficiently large size this ceases to be true.

The foregoing observation is of course incidental. It is due to the

fact that all the specimens tested were relatively small. According to the

size effect law, the effect of size on the nominal strength vanishes when

11



the size is very small, and is maximum when the size is very large. The

opposite is true for the size dependence of the stress intensity factor

required for fracture growth (Eqs. 4 and 7, Fig. 4). Thus, according to

the present theory, the size effect in Fig. 10 should become very large,

and in Fig. 7 very small, when the specimen or structure is very large.

For large structures, fatigue is better characterized in terms of the

stress intensity factor amplitude, while for small structures, fatigue is

better characterized in terms of the nominal stress amplitude. (Note that

a good absolute measure of structure size is its brittleness number - the

structure is very large if • 1 and very small if 9 X 1; see a 2ant and

Pfeiffer, 1987).

As we recall from Fig. 7, the larger the size, the smaller is the crack

length increment per cycle for the same stress intensity factor amplitude.

For the same nominal stress amplitude, though, the larger the size, the

larger is the crack length increment per cycle; see Fig. 10. The last

property is the same as in monotonic fracture - a size effect in the

usual sense of a weakening of the structure with an increase of its size.

CRACK LENGTH VS. NUMBER OF CYCLES

It is also interesting to integrate Eq. 3. Replacing A with d,

substituting da f doda and separating the variables, one has N

f(AK )-da do/C. Then, substituting Eq. 1 one gets

N = (do/C)(b ,-/P)" f [f(c)]-n da (12)

Numerical integration yields the three curves of the relative crack

length, a, versus the number of cycles plotted in Fig. 6 for the three

specimen sizes. As we see, these curves agree with the measurements

relatively well. This again confirms that fracture mechanics is applicable

despite the fact that the size effect in terms of the nominal stress is in

the present tests quite mild.
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CONCLUS IONS

1. Paris law for fatigue fracture is applicable to concrete- but for

structures with macroscopic (large) cracks this is so only (I) for one

size of the specimen or structure or (2) asymptotically for very large

sizes. Otherwise a. modification of this law is required.

2. Paris law may be adjusted for the size effect by combining it with

the size effect law proposed in Ba~ant (1984) for nominal strength in

monotonic loading. This leads to a law in which the crack length increment

per cycle is a power function of the amplitude of a size-adjusted stress

intensity factor.

3. The size-adjusted Paris law is corroborated by the measurements of

crack length growth due to fatigue loading of repeatedly loaded notched

specimens of size range I : 4. The calculated growth of the crack length

with the number of cycles also agrees with tests.

4. The fatigue crack growth can also be represented as a function of

the nominal stress amplitude and the brittleness number. In the latter

form, the size effect vanishes for very small structures, while in terms

of the stress intensity factor amplitude it vanishes for very large

structures. For sufficiently large structures, fatigue is better

characterized in terms of the stress intensity factor amplitude, whereas

for small structures fatigue is better characterized in terms of the

nominal stress amplitude.

5. The transitional size, separating predominantly brittle failures

from predominantly ductile (plastic or strength-governed) failures,

appears to be much larger (about 10-times larger) for cyclic loading than

it is for monotonic loading. Consequently, the brittleness number for a

structure under cyclic loading is much smaller than it is for monotonic

loading.
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6. It must be emphasized that the scope of the present tests has been

insufficient to check whether the foregoing conclusions are also valid

when: (1) the stress intensity factor amplitude is varied; (2) the lower

limit of the cyclic load is not zero; (3) the number of cycles per minute

is varied; and (4) different specimen geometries and notch lengths are

considered.
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Tablel Measured Maximum Loads for Monotonic Loading

Depth Maximum Load P Mean P
(in.) (lb.) (lb.)

1 2 3

Present Tests. 1.5 386 413 428 408
3.0 669 649 694 671
6.0 1190 1152 1154 1165

Tests of Bazant 1.5 405 408 410 408
and Pfeiffer, 3.0 677 706 698 698
1987. 6.0 990 1040 1042 1024

12.0 1738 1739 1750 1742



Captions

Fig. 1 (a) Fatigue fracture specimens of different sizes, and Ib)

fracture specimens use in calibrating compliance.

Fig.2 Small (a) and medium (b) size fatigue fracture specimens, loading

set-up, and LVDT gages for crack mouth opening and for deflection.

Fig. 3 Test specimen geometry.

Fig. 4 Example of calculated and measured compliance calibration curve.

Fig. 5 (a) Load-CMOD record for one specimen of medium size;

(b) measured load history for the same specimen (CMOD = crack

mouth opening displacement, in inches).

Fig. 6 Load-CMOD curves measured in monotonic loading of notched beam

specimens of three sizes (1 in. = 25.4 mm, 1 lb. = 4.45 N).

Fig. 7 Measured and calculated growth of the relative crack length with
the number of cycles, for all six specimens (two for each size).

Fig. 8 Logarithmic plots of crack length increment per cycle versus the

stress intensity factor amplitude, with independent regression

lines for specimens of three sizes (a in inches).

Fig. 9 Size effect law for (a) nominal strength and (b) critical stress

intensity factor.

Fig. 10 Logarithmic plot of crack length increment per cycle

versus the size-adjusted crack length amplitude, keeping the same

d as in monotonic tests (left - one, and right - two specimens of

each size).

Fig. 11 Same as Fig. 10, but the transition size d is ten-times larger.

Fig. 12 Logarithmic plots of crack length increment per cycle versus

the amplitude of size-adjusted stress intensity factor, two

specimens of each of three sizes, and optimum fit by size-adjusted

Paris law (Eq. 7).

Fig. 13 Logarithmic plots of crack length increment per cycle versus

nominal stress amplitude; left - without, and right -

with size adjustment.
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ABSTRACT

The size effect method for determining material fracture characteristics,

which was previously proposed by Balant and extensively verified for

normal strength concrete, is applied to typical high strength concrete.

Geometrically similar three-point bending specimens are tested and the

measured peak load values are used to obtain the fracture energy, the

fracture toughness, the effective length of the fracture process zone, and

the effective critical crack-tip opening displacement. It is shown that

the brittleness of the material can be objectively quantified through the

size effect method. Comparison of the material fracture properties

obtained with those of normal strength concrete shows that an increase of

160% in compressive strength causes: (1) an increase of fracture toughness

by only about 257., (2) a decrease of effective fracture process zone

length by about 60%, and (3) more than doubling of the brittleness number,

which may be an adverse feature that will need to be dealt with in design.

The brittleness number, however, is still not high enough to permit the

use of linear elastic fracture mechanics. It is also demonstrated that the

R-curves derived according to the size effect law exclusively from the

maximum loads of specimens of various sizes yield remarkably good

predictions of the load-deflection curves.

keywords: high strength concrete, fracture, size effect, R-curve, fracture
energy, fracture toughness, fracture process zone, nonlinear fracture
model, brittleness
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INTRODUCTION

Concretes of strengths exceeding 80 MPa (12000 psi) are now commonly being

used in the construction of high-rise buildings and offshore
1-5

structures The utilization of concrete of such high strength has been

spurred on by the superior mechanical properties of the material and the

cost-effectiveness it provides 2,6 The high strength concrete of today is

a highly engineered material with several chemical and mineral admixtures.

It is possible to obtain workable mixes with very low water contents by

using super-plasticizers and retarders. Pozzolanic additives such as fly

ash and silica fume are employed to alter the hydration reactions

beneficially and also to fill the microscopic voids between cement

particles. Small, round aggregates are used to achieve better mixing and

attain higher surface areas for bonding. Typical high strength concrete

has a very high strength matrix, is more compact and possesses well-bonded

7aggregate-mortar interfaces

In the past, research on high strength concrete has primarily

8concentrated on increasing the "strength" of the material . In the last

decade, however, considerable effort has been spent in studying its

mechanical properties and structural behavior 1-4,6,7,10-13 Nevertheless,

many aspects such as the fracture behavior need much more detailed

investigation.

A complicating feature in the fracture analysis of brittle

heterogeneous materials such as concrete is the nonlinear behavior. This

is due to the fact that the fracture process is not concentrated at a

point, the crack-tip, but is distributed over a zone whose size Is not

negligible when compared to the dimensions of the body. The existence of

2



the large fracture process zone is manifested in the size effect exhibited

by concrete specimens and structures, which is considerable but not as

strong as in linear elastic fracture mechanics (LEFM). The conditions for

which LEFM is applicable to concrete are attained only for extremely large

test specimens, whose testing would be very costly. However, material

fracture properties which are unambiguous and, especially, size- and

shape-independent can be defined only on the basis of a very large

specimen or, more precisely, by means of extrapolation to a specimen of

infinite size.

The simplest method to obtain size-independent material fracture

properties is perhaps provided by extrapolation to infinite size on the

basis of the size effect law proposed in Ref. 14 and 15 (see also Ref.

16). This law approximately describes the transition from the strength

criterion, for which there is no size effect, to LEFM criterion, for which

the size effect is the strongest possible. This law has been shown to

17
agree well with concrete fracture tests in Mode I , as well as Mode

1s 192II and Mode III 9,20 A good agreement was also demonstrated for

certain ceramics 2 rocks 22,23 and aluminum alloys

An important advantage of the size effect method is its simplicity.

The method requires only the maximum load values of geometrically similar

specimens which are sufficiently different in size. Such measurements can

be carried out even with the most rudimentary equipment. Neither the

post-peak softening response nor the true crack length need to be

determined. Another advantage of the size effect method is that it yields

not only the fracture energy (or fracture toughness) of the material but

also the effective length of the fracture process zone, from which one can
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further obtain the R-curve and the critical effective crack-tip opening

displacement. Determination of the fracture process zone size is of

particular interest for high strength concrete because, for various

reasons, such concrete is suspected to be more brittle, and, therefore, to

have a smaller fracture process zone than normal strength concrete.

In view of the aforementioned reasons, the size effect method has

been adopted for the present experimental investigation of high strength

concrete. The objectives will be to obtain the fracture energy and the

process zone size. The third objective will be to investigate whether the

R-curves derived solely from maximum load data yield load-displacement

curves that agree sufficiently well with measurements.

REVIEW OF THE SIZEEFFECT LAW AND ITS IMPLICATIONS

Size Effect

Structures and test specimens of brittle heterogeneous materials, such as

concrete, rock and ceramics, exhibit a pronounced size effect on their

failure loads. This phenomenon, which is an important consequence of

fracture mechanics, has been described by the size effect law proposed

Ref. 14 and 15:
Bfd

-
8 u d(1

N V= -' dO I

which applies to geometrically similar structures (or specimens) of

different sizes; oN = cn P u/bd = nominal stress at maximum load Pu

(ultimate load), b = thickness of the structure or specimen, same for all

the sizes (two-dimensional similarity), d = size or characteristic

dimension of the structure (or specimen), c = coefficient introduced for

n
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convenience, B and do = parameters determined experimentally, fu Is a

measure of material. strength, and 3 is called the brittleness number. Eq.

(1) also applies to structures that are similar in three-dimensions by

taking iN = cn P u/d2. In this paper, only two-dimensional similarity is

considered.

Plastic limit analysis, as well as any analysis with failure criteria

in terms of stresses and strains exhibits no size effect, that is, 0 N is

independent of size if the structures are geometrically similar. According

to Eq. (1), this behavior is obtained for very small bodies of concrete,

<<I. The application of fracture mechanics theory, however, results in N

25
being strongly size dependent. This is easily seen from the LEEM

relations for energy release rate G, and stress intensity factor KI :

p2 g(a) , K 1 AV'=Pf(m) (2)

E'b2d bv3

where P = applied load, f(m) is a geometry-dependent function of relative

crack length a = a/d (a = crack length), g(a) = [f()] 2, E' = E for plane

stress, E' = E/(I-v 2 ) for plane strain, E = Young's modulus of elasticity,

and v = Poisson's ratio. Values of f(a) can be obtained by elastic

analysis techniques, such as the finite element method, and for basic

specimen geometries, formulas for function f( ) can be found in fracture

26 27
mechanics handbooks (e.g., Tada et al. , Murakaml )

When g'(a)>O, which applies to most situations, LEFM indicates that

the maximum load occurs at infinitesimal crack extensions. Therefore, a at

maximum load is practically the same for bodies of different sizes.

Setting G = Gf (fracture energy) or KI = Kic (fracture toughness or

critical stress intensity factor) along with P = P , Eq. (2) according to

S



LEFM yields the dependence of (N on size, which is aN = constant/Vs. As is

well known, LEFM criteria govern only the fracture behavior of very large

concrete structures.

In usual-size concrete structures and specimens, the fracture process

zone which forms in front of a propagating crack affects the behavior

significantly. With increasing load this zone grows in size while

remaining attached to the notch tip (provided that the specimen geometry

is such that g'(m)>O). The process zone shields the propagating crack tip

and, thereby, increases the fracture resistance. The nonlinear fracture

regime, where the influence of the process zone is dominant, lies between

behavior governed by limit analysis and LEFM. As a result, there is

considerable size effect on the failure of normal concrete structures and

specimens but it is not as strong as that of LEFM. This transitional size

effect is described by Eq. (1).

The size effect law (Eq. 1), giving the approximate relation of 0N to

(the brittleness number), is plotted in Fig. 1. For large 13, such as

13>10, Eq. (1) gives (with an error under 5%) the approximation aN d-1 /2

which is the size effect exhibited by LEFM. For small 13, such as g<0.1,

Eq. (1) yields (again with an error under 5%) aN = Bfu = constant, that

is, failure loads are proportional to the strength of the material and

there is no size effect. For 0.1<g<10, the size effect is transitional

between LEFM and plastic limit analysis. In this range, nonlinear fracture

17,25mechanics must be employed

Fracture Parameters

Nonlinear fracture can be characterized by two material parameters,

the fracture energy, Gf , and the effective length of the fracture process

6



zone, cf. When determined from individual tests, however, these

quantities are strongly slze-dependent. Unambiguous definitions of Gf and

cf as fundamental material properties, independent of specimen size and
sae17,22,23,25

shape 17 2 , can be given on the basis of size effect: Gf and cf are

the energy required for crack growth and the effective (elastically

equivalent) length of the fracture process zone, respectively, in an

infinitely large specimen.

Mathematically, the definition of fracture energy can be stated as Gf

=lim G = lim (K 2 /E'), where G and K are the apparent values of G

and KI , respectively, calculated according to LEFM (Eq. 2) for the
measured peak load Pu and initial crack or notch length a0 .

Eq. (I) can be used to determine Gf and cf from experimental data

using their foregoing definitions. A simple formula for Gf has been

derived in Ref. 25:
2f2

Gf = 2 u, d 0g(a. 0C3)
c E'

n

For the effective length of the fracture process zone, the following

expression has been derived in Ref. 22.

d0 g(M0 )
Cf -9 g, -o (4)

The ratio of cf to the true length of the process zone in concrete depends

on the shape of the softening stress-displacement or stress-strain

relations. For concrete, the ratio 2 1 seems to be about 2. However, the

actual length of the process zone need not be known for the calculations.

Also, for an infinitely large specimen, the fracture toughness, Kic

7



can be obtained as:

Bf
K = _f u dgOC5)
Ic E'f n0 0n

The practical applicability of Eq. (3) (or Eq. 5) has been verified

in Ref. 18 through tests of normal concrete which showed that the

three-point bend specimens, the double-notched tension specimens and the

eccentric compression specimens yield about the same value of Gf. In this

study we assume the same to be true of high strength concrete.

Due to the approximate nature of Eq. (1), the infinite size used in

the definitions of Gf , cf and KIc must not be interpreted literally. In

practice, the infinite size should be assumed as a size just beyond the

upper bound of the range for which the size effect law has been calibrated

25by tests or otherwise
Using the relations B = Ef/g1(a )cf)1/2cn/fu and dc

cfg'(o)/g(xO ) in Eq. (1), the size effect law can be reformulated in

terms of the material fracture properties Gf and cf

fE'Gf

n= Cn (ao )cf + g(aod (6)

Alternatively, Eq. (6) can be put in a form convenient for the analysis of

specimens which are not geometrically similar 
22

EN  - (7)
[cf+3TN

where TN VgF Pu/bd, a = d g(aO)/g'(aO); TN = intrinsic

(shape-independent) nominal stress at failure, and d = intrinsic

(shape-independent) size of the structure.

8



The brittleness number, S, (see Eq. 1) proposed by Baiant can also be

expressed as 22,25

g( 0 ) d (8)

Sg'(o)Cf- f C8f

This number is capable of characterizing the type of failure (brittle or

17ductile) regardless of structure geometry . It can quantify the proximity

of the behavior of a structure to LEFM and is, therefore, a convenient and

effective measure of the brittleness of a structure or specimen. It is

also useful for comparing the behavior of specimens of different materials

(with different compositions and strengths) such as high strength and

regular concretes. Other brittleness numbers defined for concrete by

Hillerborg 28 and Carpinteri 29,30 can compare only structures of similar

geometry.

The size effect law in the form of Eq. (1), (6) or (7) has the

advantage that its parameters B and dO, or Gf and cf, can be determined

from the measured peak loads Pu by linear regression 14,15 Eq. (1),

applicable to geometrically similar specimens of different sizes, can be

algebraically transformed to a linear plot:

Y = AX + C (9)

in which

X = d, Y = (fU /a-) B = 1/Vr, and do = C/A (10)

The size range of the specimens used in the regression analysis must be

sufficiently large in relation to the random scatter of material

properties and test measurements. For the typical scatter of concrete, the

minimum size range recommended is 1:4.

The size effect method can also be used to determine fracture

9



properties other than those already defined. Considering the infinitely

large specimen again, material parameters such as the effective

(elastically equivalent) crack-tip opening displacement at the peak load,

6ef ' can be related to cf and Kic using LEFM relations 23:

8Klc c

ef ' CVf

The value of 6 pertains to the effective opening when the stress at the

notch (or initial crack) tip is just reduced to zero, and the fracture

process zone is about to detach and advance away from this tip.

The size of the fracture process zone can also be characterized by

the length parameter

Kc2
(t i C W 12)

31
first used by Irwin for the size of the yielding zone in ductile

fracture. For concrete, this length parameter was introduced by Hillerborg
32

et al. . The parameter t0 is a size-independent measure of the intensity

of the toughening or crack-tip shielding mechanisms. It can be used to

compare the brittleness of one material with another. A material with a

relatively low t0 would be more brittle than a material with a higher t0

R-Curves

Another important consequence of the fracture process zone is the

fracture resistance curve or R-curve. Since the fracture process zone

evolves as it propagates, the resistance R(c) to fracture growth,

representing energy dissipated per unit length and width of fracture

extension, gradually increases. The function R(c), called the R-curve, was

initially proposed to be used as a material property 33,3, independent of

10
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the shape of the specimen or structure. It was, however, shown35'36 that

the R-curves for concrete strongly depend on the specimen geometry. A

general derivation of the R-curve equations from the size effect law as

presented In Ref. 22, yields the expression:

R(c) = Gf -, cO) f (13)
o f

in which 7 is given by:

f = - + (14)

The foregoing relations (Eqs. 13 and 14) are valid as long as the fracture

process zone remains attached to the tip of the initial crack or notch.

23This ceases to be true after the peak load . Since the fracture process

zone in the post-peak regime is detached from the tip (separated from the

initial tip by a traction-free crack) and is advancing ahead with

approximately constant size, It dissipates roughly the same amount of

energy per unit crack extension. Consequently, the critical value of G

after the peak load must be kept constant and equal to the value of R

reached at the peak load. The effective R-curves given by Eqs. (13) and

(14), are size-independent until the peak load but deviate afterwards into

size-dependent horizontal branches. The size-dependence of R-curves in the
37

post-peak regime has been previously observed for concrete and other

materials 23,24,38 These effective R-curves tend to move toward complete

23coincidence with the actual R-curve as the size increases
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EXPERIMENTAL INVESTIGATION

Test Details

High strength concrete used in the construction industry varies widely in

composition and strength. Even the demarcation between high and normal

2,8
strength concretes is subjective and appears to be continually rising

In order to study typical high strength concrete used in the industry,

this investigation was conducted on material obtained directly from a

batch mixed for the construction of a high-rise building in downtown

Chicago. The concrete was provided by Material Services Corporation of

Chicago, Illinois.

The concrete mix was'designed to exceed a 28-day compressive strength

of 83 MPa (12000 psi). Cement of much higher quality than standard (ASTM C

150) Portland cement was selected. Silica fume (micro-silica) and fly ash

were used as mineral admixtures. The maximum aggregate size (d ) in thea

mix was 9.5 mm (3/8 in.). The details of the mix composition are given in

Table 1. The proportions of cement : sand : gravel water fly ash :

micro-silica, by weight, were 1 : 1.35 : 2.42 : 0.35 0.25 0.04. The

fresh concrete had a unit weight of 2410 kg/m 3 (151 lb/ft 3 ) and a slump of

235 mm (9.3 in.) as measured with a standard 305 mm (12 in.) cone.

Along with the fracture specimens, three 152 mm x 304 mm

(6 in. x 12 in.) cylinders and three 102 mm x 204 mm (4 in. x 8 in.)

cylinders were cast. These cylinders were capped with a sulphur compound

and cured in a fog room. They were tested in compression after 14 days.

The larger cylinders failed at an average maximum compressive stress of

85.5 MPa (12400 psi), with a standard deviation of 1.4%. This value,

denoted as f14 was taken to be the mean compressive strength of the

12



concrete. The smaller cylinders had an average compressive strength of 84

MPa (12200 psi), with a standard deviation of 0.4%. The 28-day compressive

strength of the concrete, fV , as measured by testing two 152 mm x 304 mm
C

(6 in. x 12 in.) cylinders, was 96 MPa (13950 psi).

Beam specimens of four different sizes, three in each size, were cast

from the same batch of concrete. All specimens were compacted by rodding

and stored in the molds for 24 hours. They were then demolded and cured

under water until the tests. The specimens (Figs. 2 and 3) were 38 mm

(1.5 In.) thick and their depths were 305, 152, 76, and 38 mm (12, 6, 3,

and 1.5 in.). Their lengths were 8/3 times their depths and their spans

2.5 times the depths. Before testing, a notch 2 mm (0.08 in.) wide was cut

at the midspan of each beam using a diamond band saw. The length of the

notch was one-third the depth of the beam.

The three-point bending test was used at_ to the relatively simple
22

test setup and the impossibility of crack bifurcation 2 The peak loads

of the largest specimens were measured by loading them under stroke

control in a 534 kN (120 kip) load frame with an MTS control system. The

other specimens were tested in a smaller load frame of 89 kN (20 kip)

capacity, with a load cell operating in the 8.9 kN (2000 lb) range, and

crack mouth opening displacement (CMOD) control with an MTS closed-loop

control system was used. A Schaevitz linear variable differential

transformer (LVDT) with a range of 0.25 mm (0.01 in. ) was mounted across

the notch of each beam to monitor the CMOD. The measured CMOD was used as

feedback to control the tests at a constant CMOD rate. This type of

loading stabilized crack propagation even after the peak load and thus

made it possible to obtain complete load-deflection curves for the

13



specimens. The load-point displacements were measured between the tension

faces of the beams and the cross-head of the loading ram with a Schaevitz

LVDT of 1.27 mm (0.05 in.) range. The load-displacement and load-CMOD

curves were continuously recorded for each beam. The test setup is shown

in Figs. 4 and 5. All the beams were tested 14 days after casting and with

CMOD rates such that they reached their peak loads in about 10 minutes.

Typical curves for different specimen sizes are shown in Figs. 6 and 7,

and the raw data are given in Table 2.

The test results from the largest beams were, however, excluded from

the analysis which follows because their load values were inconsistent

with the trend of the other tests. In retrospect, this inconsistency may

be due to the difference in control parameters used for testing and in

machine characteristics. Under stroke control, which was used only for the

largest beams, it was not possible to obtain a stable response at the peak

load. The instability of crack propagation may have caused a high crack

propagation rate near the peak load. This might explain why the peak loads

of these specimens were higher than expected.

The modulus of rupture of the material was used as the measure of Lts

strength. Four specimens, each with a depth of 51 mm (2 in.) and a span of

152 mm (6 in. ), were cut from two of the 152 mm (6 in.) deep fracture

specimens which had already been tested. These unnotched beams were tested

to failure in three-point bending under stroke control in the 89 kN

(20 kip) load frame. From the peak loads the modulus of rupture of each

specimen was calculated. The average value (f ) was found to be 11.0 MPau

(1600 psi), with a standard deviation of 5%. Carrasquillo, Nilson, and
7

Slate proposed an empirical formula for the modulus of rupture of high
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strength concrete: f r= 0.94 VTf' (stresses in MPa). Using the value of

fV in their relation, f was obtained as 8.7 MPa (1260 psi). The
c14 r

difference in the values of f and f may oartly be due to errors in theu r

predictions of the formula (known to be up to 15%) but It might also be

due to the significant size effect which is known to exist in flexural

tests on plain concrete beams 15,39

As noted previously by several researchers7'9'1 0'12 , cracks in high

strength concrete were seen to propagate through the coarse aggregates.

This is an important difference from normal strength concrete in which

cracks (in the vicinity of gravel particles) propagate mainly along the

aggregate-mortar interfaces. The reduced crack deflection by the

aggregates is due to the strong aggregate-mortar bond and the fact that

the strength of the matrix approaches that of the aggregates. Obviously

this near-homogeneous behavior decreases the width of the process zone as

well as the shielding effect of the aggregates.

Analysis

Linear regression analysis (Fig. 8), using Eqs. (9) and (10), yields

coefficients A = 1.58 mm-  (40.1 in.- I ) and C = 51.7. The coefficient of

variation of the deviations from the regression line is

= Sy X  Y = 15%, where s iyX Is the standard error of the Y estimate and

Y is the mean of the experimental Y-values. From Eq. (10), the parameters

of Eq. (1) are computed as B = 0.139 and do = 32.8 mm (1.29 in.).

Nonlinear regression analysis directly for B and do , using the

Marquardt-Levenberg algorithm, results in B = 0.198 and do = 13.3 mm

(0.52 in.) with w = 8.4%. Since the nonlinear regression provides a better

fit, the latter values for the size effect parameters are used henceforth.
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Fig. 9 shows the size effect curve (Eq. 1) based on the calculated

parameters along with the experimental values of normalized nominal

stress. It is seen that the trend of the data is fitted very well by the

size effect law. For comparison, data from similar tests of normal

strength concrete (particulars given later) are also shown. It is now

important to observe that the data points of the high strength concrete

beams lie closer to the LEFM criterion than those of usual concrete. This

indicates that the same specimen made of high strength concrete behaves in

a more brittle manner than that made of regular concrete. Yet the behavilor

of the present specimens cannot be described by LEFM. For LEFM relations

to be applicable with errors less than 2%, the brittleness number 1 would

have to be greater than 25, that is the beam depth would have to exceed

334 mm (13 in.).

For the specimen geometry used, the function f(a) = 6.647V'(i-2.5m

+4.49a2-3.98a +1.33 4)/(i-a)3/2 was obtained by fitting the results of

linear elastic finite element analysis. Using g( 0 ) = 14.20 and

1(a 0) = 72.71 in Eq. (5), Kic is 30.0 MPaVr-i (864 psi V7-n.), and the

value of cf. from Eq. (4), is 2.6 mm (0.10 in.). This yields cf = 0.3da

From Eq. (12), t0 for the concrete tested is 7.4 mm (0.29 in.) which is

about 0.8d . Young's modulus of elasticity (E) may be computed from thea

formula of Carrasquillo et al. , E = 3320 Vf + 6900 (in MPa), whichc

yields E - 37.6 GPa (5.45x0 6 psi). The fracture energy Gf ( KIc/E) is

found to be 24.0 N/m (0.137 lbs/In.). The critical effective crack-tip

opening can be computed by substituting the values of the basic fracture

properties in Eq. (1i); 8ef = 4.11xlO-3 mm (1.60x0 -4 in.).

For comparison, It is interesting to consider the results of similar
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tests on normal strength concrete with d = 13 mm (0.5 in.). The -elativea

proportions of cement : sand : gravel water, by weight, were

1 : 2 : 2 : 0.6. The specimens and loading setup were identical to the

present ones except that the notch lengths were one-sixth of the beam

depth. The curing conditions were the same as those of the high strength

specimens. The tests were conducted 28 days after casting and, therefore,

the parameters corresponding to 14 days had to be estimated to this

effect, the following relations were used: f = 0.62 Vf (ACI); fV =
r C t

0.50 Vfc" (ACI); E = 4735 VU' (AC); f'(t) = f'(28) t/(4+0.85t) (ACI); and
c C c c

Gf = (2.72+3.103f')f' 2d /E where V , f' , and E are in MPa, d is in mm,
ft t a c t a

40Gf is in N/mm and t is the age in days . The material properties

estimated for the age of 14 days are: f' = 32.5 MPa (4700 psi), E = 27.0c

GPa (3.91x106 psi), fr = 3.5 MPa (510 psi), Kic = 24.0 MPaViiim (690.1

psivin.), Cf = 6.6 mm (0.26 in.), Gf = 21.4 N/m (0.1ZZ lbs/In), 6ef 1

7.29x0-3 mm (2.87x10-4 in.), and t0 = 46 mm (1.80 in.). The values of cf

and t0 are about 0.5da and 3.6d a , respectively. A graphical comparison of

the properties of the high strength concrete and the regular concrete is

presented in Fig. 10.

As concluded by recent investigators of high strength concrete

11,12,41fracture ,, Gf and K increase with strength but much less than

Iccthe material strength itself. For an increase in strength Cf') of about

160%, Gf and Kic increase only by 12% and 25%, respectively. More

significantly, the values of cf and to , especially the latter, decrease

considerably with increase in strength. This implies that the size of the

process zone must be smaller in high strength concrete than in regular

concrete, and the crack-tip shielding by the fracture process zone must be
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weaker. Consequently, the same structure made of high strength concrete is

more brittle than that made of regular concrete. The brittleness number of

any structure is more than doubled since it Is inversely proportional to

the value of cf *

Conventional fracture analysis of the type applied to metals, based

only on KIc or Gf , would yield the misleading conclusion that the

ductility of concrete increases with strength; see e.g. de Larrard et

41 11
al. . This was also pointed out by John and Shah on the basis of

tests on high strength mortar.

42
According to RILEM recommendation , the fracture energy, denoted as

R
Gf is defined by the work-of-fracture method introduced for ceramics by

43 44Nakayama and Tattersall and Tappin , and proposed for concrete by

Hillerborg 28,45 In this method, Gf can be determined from the area, W0

under the load-deflection curve of a fracture specimen. The total energy

dissipated in the test is given by W = WO mg Uf where mg = weight of the

specimen and uf = deflection when the beam fractures completely. The RILEM

fracture energy is assumed to be the average dissipated energy per unit

cracked surface area; therefore, Gf = W/(d-a )b where d = depth of the

beam and a0 = initial notch length. For practical reasons, uf was taken to

be the deflection when load had dropped to 10% of the measured peak load.

RRThe corresponding fracture toughness can be obtained as KIc = Y ,

where E0 is the Young's modulus corresponding to the initial compliance.

The values of KR_ /K for different sizes have been calculated from the
Ic Ic

present results and plotted in Fig. 1i. It is obvious that the fracture

toughness obtained by the RILEM method is strongly size-dependent and

prone to considerable scattering. It also appears that for very large
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sizes the values of KR  tend toward K I.e., the fracture toughnessIc Ic,

from the size effect law. A similar result could be shown in terms of the

fracture energy.

PREDICTION OF STRUCTURAL RESPONSE FROM R-CURVES

An effective, simple and reasonably accurate method of predicting the

load-deflection curves is to identify the size effect law from the maximum

load data, determine from it the geometry-dependent R-curve, and then

23
utilize the R-curve along with LEFM relations . This method is now used

to predict the load-deflection curves of the high strength concrete beams.

The predictions are then compared with the measured load-deflection

curves.

The derivation of the equations used in the method is briefly

outlined for convenience. Let u = load-point displacement of a specimenc

due to fracture, u0 = displacement calculated as if there were no crack,

and u = u + u0 = the total displacement. Wp denotes the total energy that

would be released if the fracture occurred at constant load P. Since

8WP/8 a = bG = P 2g(t)/E'bd, we have:

= b f G(a) da U- g((') da' (15)

w 2P

uc =ar - = 2 g(a') da' (16)
0

At the same time, for G =R:

E bvrd"P = b d)R(c) = )K IRCc) (17)
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where c = (-a0 )d = effective crack extension, and KIRC) E _R =

effective fracture resistance. Thus, P and u can be obtained from Eqs.c

(16) and (17), for different chosen values of a or c, yielding the

load-deflection curve of the structure or specimen with a propagating

crack. Before the peak load, one uses the R-curve values derived from the

size effect law (Eqs. 14 and 15), but after the peak load, as mentioned

earlier, the R-curve, as well as K IRCc) is constant.

To obtain the total deflections, the elastic deflections ub and us

due to bending and shear must also be calculated. Assuming plane stress

conditions and adopting the bending theory, the load-point displacement u0

of the beam without crack is

PL3  0.6(1+v) PL (18)
U0 = ub+ us U9Ub 3 (s WE

4bd E

where L is the span of the specimen, and ub and us are the contributions

of bending and shear, respectively. The weight of the beam is

approximately taken into account in the calculations by replacing it with

a concentrated midspan load which produces an equivalent midspan moment.

Figures 12(a-c) compare the predictions of the foregoing method for

the present high strength concrete beams with the measured load-deflection

curves for specimens of three different sizes. The Young's modulus, in

each case, was taken as that corresponding to. the initial compliance of

the specimen, and the Poisson's ratio was assumed to be 0.20. It can be

seen that the R-curve method predicts the specimen response quite well.

The R-curve derived from the size effect law is thus shown to be a useful

tool for modeling structural behavior with ease and simplicity.

20



CONCLUSIONS

1. The size effect method provides reliable fracture properties for high

strength concrete with a very simple experimental setup. These properties,

namely, the fracture energy (or fracture toughness) and the effective

length of the fracture process zone (as well as the effective critical

crack-tip opening displacement derived from them) are size-independent

and, therefore, true material properties.

2. As the strength increases, the fracture energy and the fracture

toughness of concrete also increase, although much less than the strength.

The effective size of the fracture process zone, however, diminishes. This

results in decreased crack-tip shielding and, consequently, increase in

the brittleness of specimen or structure. Increasing the compressive

strength by 160% causes the brittleness number to more than double. This

property can be disadvantageous and needs to be addressed in design.

3. Despite the aforementioned increase in brittleness, the behavior of

contemporary high strength concrete, in the normal size range, is still

governed by nonlinear fracture mechanics rather than linear elastic

fracture mechanics.

4. The R-curves derived according to the size effect law solely from

maximum loads can be utilized to provide reasonably accurate predictions

of the load-deflection curves of concrete structures, even in the

post-peak regime. The procedure requires only: (1) knowledge of the linear

elastic fracture mechanics relations for the geometry of the structure and

(2) the values of two basic material fracture parameters obtained from

maximum loads through the size effect method.
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NOTATION

a effective crack length

b specimen thickness

c elastically equivalent crack growth

cf effective length of fracture process zone

c coefficient for convenience (here, equal to 1)n

d characteristic specimen dimension (here, specimen depth)

d maximum aggregate sizea

d 0 parameter determined experimentally

fo 28-day compressive strength
c

fo 14-day compressive strength
C14

f some measure of material strengthu

g(a) function dependent on specimen shape

g'() derivative of g(a) with respect to a

t 0  parameter related to the size of the process zone

A slope of linear regression plot

B parameter determined experimentally
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C intercept of linear regression plot

E Young's modulus

E' E, for plane stress; E/(1-v 2), for plane strain

G strain energy release rate

Gf fracture energy

KI  stress intensity factor

K Ic fracture toughness

P maximum or peak loadu

a relative crack length

a0 initial relative crack or notch length

brittleness number

a ef effective critical crack tip opening

v Poisson's ratio

T N nominal stress at maximum load
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TABLE 1

Concrete Composition for about 0.8 m3 (1 yd3

Dundee Cement (ASTM Type I) 363 kg (80C ib)
Sand (FA2) 490 kg (1080 ib)
Gravel (CAM5) 880 kg (1940 lb)
(Crushed Limestone)

Water 127 kg (280 ib)

Fly Ash (Class C) 91 kg (200 lb)
Micro-Silica 16 kg (35 lb)
(W.R.Grace Force 10,000)

Retarder (naphthalene-based) 1 t (35 oz.)
(W.R.Grace WRDA 19)

High-Range Water Reducer 5.3 t (180 oz.)
(Pozzolith 100XR)
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TABLE 2: Summary of Test Results

Specimen . Peak Deflection Final * Peak E0  W0
Dimensions Load at Peak Load Deflection CMOD
(mm x mm) (N) (mm) (mm) Cmm) CGPa) (N-mm)

38.1 1668 n.r. n.r. 0.0127 6.0 n.r.
x 101.6 1490 0.0610 0.1092 0.0114 7.0 74

1735 0.0914 n.r. 0.0146 5.5 n.r.

76.2 2357 0.0864 0.1727 0.0222 7.7 167
x 203.2 2091 0.0686 0.1626 0.0152 8.2 143

2535 0.0711 0.1422 0.0292 9.0 142

152.4 3825 0.1143 0.2184 0.0381 9.2 362
x 406.4 3736 0.0940 0.3200 0.0437 6.2 418

3825 0.1710 0.2388 0.0356 12.7 326

304.8 7072
x 812.8* 7442 n.m. n.m. n.m. n.m. n.m.

7695

t All specimens 38.1 mm wide

Stroke-controlled tests, not used in analysis

* Deflection when the load drops to 10% of peak load

E0 - Young's modulus from initial load-deflection compliance

W0 - Area under load-deflection curve
n.m. - values not measured

n.r. - values not recorded due to failure of instrumentation
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List of Captions

1. The size effect law.

2. Geometry of the three-point bending specimens used.

3. Specimens of four different sizes.

4. Test setup.

5. Instrumentation used for the tests.

6. Typical load-displacement curves for different sizes.

7. Typical load-CMOD curves for different sizes.

8. Linear regression for size effect parameters.

9. Size effect curve.

10. Variation of properties with strength.

11. Fracture toughness from work-of-fracture method.

12. Predicted and experimental load-deflection curves for
different sizes, (a) d=152.4 mm (b) d=76.2 m (c) d=38.1 mm.
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APPENDIX A6

Title no. 87-M2

Antiplane Shear Fracture Tests (Mode III)

By Zdendk P. Batant, Pere C. Prat, and Mazen R. Tabbara

Mode III (antiplane) shear-fracture energies of concrete and mortar conditions. In theory, a perfect Mode II shear loading
were memured on the basW of the size-effect law. The specimens were could be achieved in an elastic specimen of that type,
cylinders with ; circumferential notch at their midlengths, subjlcted
to pure torsion as zero axial force. The specimens were geometrically but this would require applying additional antisymme-
similar and their sizes varied as 1:2:4. The mortar specimens were tric tensile forces, as shown in Reference 1, which
observed to behave in a manner closer to linear elastic fracture me- would be difficult to carry out. Moreover, as pointed
chanics than did the concrete specimens. The ratio of Mode III to out by Ingraffea and Panthakil in a dialogue with Ba-
Mode I (tensile) fracture energies was found to be about 3 for con- 2ant and Pfeiffer,' the failure of these specimens might
cree and about 8 for mortar. The rcu indirectly indicat e a a i be partly caused by axial compression splitting (similar
nijlcant mechanism causing transverse tensile stresses across the liga- to the Brazilian split-cylinder test), which again pre-
ment. The size-effect measurements also yield an ertimate of the size vents attaining pure Mode I shear conditions.
of the fracture-proces zone, which is found to be nearly the same as To gain additional insight, Balant and Prat' decided
for Mode I fracture. to study Mode III (antiplane shear) rather than Mode

It (in-plane shear). Using cylindrical specimens with a
Kae:wards concete; akint (firsctuw): diumeat aal me&- circumferential notch subjected to torsion (Fig. I and

men: main (mueE); shr tu; alidmm tensile Stresses; 2), they carried out Mode III fracture tests of concrete,

Until recently it had been generally accepted that which apparently had not been conducted previously.
fractirecret is away tensile g ne r a gtes tt According to the theory of elasticity, the applied torquefracture in concrete is always tensile and propagates in produces a stress and deformation field that is per-the direction normal to the maximum principal stress. fectly antisymmnetric with regard to the crack plane;

Such behavior is indeed observed in the diagonal shear thus, a planar crack represents a pure shear crack. The

failure and torsional failure of beams, as well as in size-effect method5' has been used to determine the

punching-shear failure of slabs. The existence of shear Modefactue eer u tonc ete rpingly,

fracture in brittle materials has been denied, and even tale fractu obtne d fromnthee tests has been

such claims as "shear fracture is sheer nonsense" have the value of theMe hactue
been eard.much smaller than the value of the Mode 11 fracture

Dube ar , henergy G," obtained from the preceding tests of notched
Doubs aose hoeve, wen dnamc tstsof er- beams, although still larger than the Mode I (opening

tain concrete box structures loaded by short pressure mode) fracture energy G. It apperared that the value

pulses caused the top slabs to fail by direct shear next of shear-fracture energy might not reres a material

to the supports. As a result of this and other experi- constant but could be a function of the normal stress

ences, tests of shear fracture were undertaken at
across the crack plane, and that the value of this stressNorthwestern University using edge-notched speci- might in turn depend on the volume changes in the

mens of osipescu geometry loaded in Mode It (in-plane fracture process zone. This conclusion was supported
shear). The size-effect method was used in those tests to by the finding that torsional loading in a triaxial tor-

determine the Mode It fracture energy. Interpretation sional testing machine that produces axial confinement

of those tests was not unambiguous, because a per- and prevents free axial expansion of the cylinder leads

fectly antisymmetric Mode It field at the crack tips is

not achieved in this type of test, not only in the actual
nonlinear behavior, but also according to the theory of
elasticity. The elastic solution of the stress field near the ACI Mate,, Journal V. V, 0 i. Ian".r-Februay 1*"

r tp ivd Aug. !S 1983. ani rcivcwed unda astitute publication policies.crack tips in those specimens indicatcs the pcesence of C 1 , C199Con0c te Insitute. All rghts resved, including

compressive stresses across the crack-line extension, the making of copies unless peirmisuon is obtined from the copy ght oroapi-eto"s. Per'tnentt discuss=mt will 13e published in the November-Decemer 1990
which represents deviations from the ideal Mode II ACI Matnab JosMa if reieea y Aug. . 1990.
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Zim** P. Reta. FACI, is a profasoat Northwestern University. Evanston. resh and Tschegg determined a failure surface in terms
Ill.. wh e rec nly served a Director of the Center for Concrete and C ,o- of the Mode III and Mode I stress-intensity factors.
matemads. Dr. Batant it a registered structural engineer, a consultant to Ar- Their conclusions on the effect of axial stresses are
gameNatonal Laboratory, and is on the editortal boards of several journal. similar to those made by Balant and Prat and are ex-
He is Chawman of AC1 Committee 446. Fracture Mechanics a member of AC!
Commiattes 209, Creep and Shrnkage in Concrete; and 348. Structural Safety: tended further here.
and Chairman of RILL-W's committee on creep and SMiRT's Division H. In
1987. Profenor Batant visited the University of Tokyo as Kajima FoundaiAon EXPERIMENTAL INVESTIGATION
Fellow and has been NATO senior guest scientist at E.N.S.. Pars-Cachan. To determine fracture energy by the size-effect

AC! member Poe C. Pro is a scientific research aswcte at the Mate rals Si. method, geometrically similar specimens of signifi-
ene Institute (CSIC). Barcelona, Spain. He obtained his civil enineer ng dr- cantly different sizes needed to be tested. Similar cir-
reaflrom the School of Civil Efinee of the rc*nical University of Cate- cumferentially notched cylinders of diameters d = 1.5,

lo a, Barcilona, Spain, in 192. and his PhD from Northwestern University
in 1987. His resarch interests include constitutive models for geomaterals. 3, and 6 in. (38, 76, and 152 mm) were used. The
strain-softening be"vior, facture mechanic. nonlinear analysis of concrete length-to-diameter ratio was f /d = 2. Circular notches

ures. experimental methods. and finite element applications. of thickness 1& in. (1.6 mm), located in the middle

ACt member Mam R. rTabber isa graduate reK x mitant at Northwest- plane perpendicular to the axis of the cylinders (Fig. I
ern University, Evanston. llnoi. His research interests include constitutive and 2), were created by casting. The notch depth was a(
models for concrete, fracture mechanics, and finite element applications. d /4.

to a nonplanar failure mode; see the conical failure
surfaces in Fig. 3.

The purpose of this paper is to examine these quq-
tions more deeply, report the results of a larger series -

of Mode III failure tests that included mortar speci-
mens as well as concrete specimens, determine the .
Mode III fracture energy, and examine the applicabil- "
ity of the size-effect law. An additional purpose is to r .
extrct from the test results an estimate for the length -,. .- :'_.
of the fracture process zone. The significance of this
research is expected to be an improved ability to pre-
dict brittle failures of concrete structures.

The torsional fracture specimen conceived by Ba.ant
and Prat was independently also introduced by Suresh
and Tschegg' to study mixed-mode fracture of fatigued
ceramics. Using combined torsional-axial loading, Su-

Fig. 2 - Geometrically similar notched specimens used
in tests

Fig. I - Torsional cireumferentially notched fracture Fig. 3 - Conical failu,-, urface observed in previous
specimens tests with restrained axzat displacement
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Table 1 - Compression strength 1,, psi
...-. Mix I Mean Standard deviation

Concrete 5633

Mortar 5365 K4

imum sand-grain size of 0.19 in. (4.8 mm). The aggre-

gate consisted of crushed limestone and siliceous Lake
Michigan beach sand from Illinois. ASTM C 150 Type
I portland cement, with no admixtures and no air-en-
training agents, was used. The mortar mix had a water-
cement ratio of 0.5 and a cement-sand ratio of 1:2. The
same sand as for the concrete specimens was used, i.e.,
the maximum aggregate size was d, = 0.19 in. (5 mm).
The aggregate composition was thus the same as for the
concrete specimens except for the omission of gravel.
The water-cement ratio differed from that of the con-
crete specimers in order to achieve approximately the
same workability.

The specimens were cast in waxed cardboard molds
from which they were removed after one day. Subse-
quently, they were cured in a moist room at 95 percent
humidity and 80 F temperature until about I hr before
the test. The tests of mortar specimens were made at
the age of Z8 days. The age of the concrete specimens
at the time of test was 35 days, instead of the standard
28 days, because of a delay due to the repair of equip-
ment. Fig. 4 shows the specimens of all sizes installed
in the testing machine. The values of the strength and

Fig. 4 - Specimens during testing in MTS machine fracture energy for the age of 28 days were obtained by
adjusting the 35-day values.

Fig. 5 exhibits the fractured concrete specimens after
The torque T was applied at each end of the speci- testing and demonstrates that the fracture surface was

men as a couple, as shown in Fig. I and 4. The wedge- planar and did not propagate in the direction normal to

shaped cutouts on which the loads were applied were the maximum principal stress, which is inclined. A sin-
cast in a standard cylinder mold in which wooden in- ilar fracture surface was observed for the mortar spec-
serts were placed. Each end-couple had an arm of 2d/3 imens. All the tests were carried out at room tempera-
and was applied in a plane perpendicular to the axis of ture in a closed-loop MTS machine under stroke-con-
the specimen at a distance of d/8 from the ends. trol conditions. The loading rates were chosen such that

Two test series were carried out, one for concrete and the time to maximum load was 3 to 5 mm for speci-
one for mortar. Each test series consisted of nine tor- mens of all sizes. The size-effect method, used to cal-
sional specimens, three for each size (Fig. 2), plus three culate the fracture energy, required knowledge of only
companion cylinders 3 in. (76 mm) in diameter and 6 the maximum load, from which the maximum torque
in. (152 mm) long, to test for compression strength. All was then calculated.
the specimens and control cylinders for each test series
were cast from the same batch. The means and stan- SIZE-EFFECT ANALYSIS AND CALCULATION
dard deviations of the compression strength f after 28 OF FRACTURE ENERGY
days of moist curing are given in Table I. The 28-day Size effect is understood as the dependence of the
f' values for concrete were not measured directly, but nominal stress at maximum load (failure) -, on a char-
calculated from the compression strength f,(35), mea- acteristic dimension of the specimen d, when geometri-
sured at the time of the tests at which the age of con- caly similar specimens or structures are considered. In
crete was 35 days. The adjustment for age was based on the case of three-dimensional similarity. r, is generally
the approximate formula"'f(t) = f'(28) [1 - 0.277 log defined as i,, = CP'd-, where P = maximum load. d
(:, 2S)1 rom which Jc(8) = 0.974f'(35). = characteristic dimension of the body. anc C = ar-
.ll spec'mens were cast with the longitudinal axis in bitrary nondimensional constant. For :he present spec-

a vertical position, to insure statistical homogeneity and imens r. = 16T-,;d' = CPd. where T = maximum
isotropy within the notch plane. The concrete mix had torque, C = 16R, rd, which is constant since R. d =
a water-cement ratio of 0.6. and a cement-sand-gravel constant for geometrically similar specimens: and T =
ratio of 1:2:2 (all ratios by weight). The concrete had PR where R is the arm of the force couple applied at
maximum gravel size d. = 0.5 in. (1.7 m) and max- the ends. Note that the value of C has no effect on the
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Fig. 5 - Fractured specimens after testing, showing the failure surfaces

values of fracture energy given by Eq. (3), which fol- (L1 , I (d,> I
lows. The value of r, as defined represents the maxi- ,,) - - + i (2)
mum elastic stress if there were no notch or crack. 0

Because the cracks in concrete propagate with a rel-
atively large microcracking zone which blunts the frac- Eq. (2) represents a linear relation between ' an d
ture front, the size effect represents a transition be- did,, and may be rewritten as Y = AX + C, where Y
tween the plastic limit analysis for which there is no size (f'17/", X = did,, C = 1B', and .4 = C/Xo. A
effect (i.e., -., is constant), and the classical linear-elas- linear regression of the test results may be used to de-
tic fracture mechanics for which the size effect is the termine A and C, from which B = C-"2 and X. = C/
strongest possible and which is of the type r, - d - . A. The regression analysis also yields the statistics of
The transition may be described by the approximate the errors. Fig. 6 and 7 give the coefficient of variation
size-effect law' wx of the vertical deviations from the regression line

and the correlation coefficient P.

d - As proposed in References 11 and 12, the con-
B,= Ifl I -' (1) crete fracture energy Gf may be uniquely defined as the

energy release rate required for crack propagation in an
infinitely large specimen. In theory, this definition mustwhere B and ) are empirical constants, d. is the mai- yield results that are independent of both the size and

mum size of aggregate, and r7, is the tensile strength of the shape of the specimen, provided that the correct
concrete. Eq. (1) has been derived in References 5 and size-effect law is known. The exact size-effect law is

11, and for three dimensions in Reference 12. It has unkn-wnet the appoxim at size-effect law i
been experimentally validated in Mode I (opening) unknown, but the approximate size-effect law in Eq. (1)
bracueean d naly valindated a imdely (opnin) t has been shown to be adequate for practical purposes.
fracture6 and was also found to approximately apply to and valid for the size range 1:20 regardless of specimen
the quasi-Mode II (shear) fracture tests in Reference I,
and to diagonal shear." Tests showed that Eq. (1) is shape. The following formula has been derived"'

also applicable to various brittle failures of concrete
structures, such as failure of beams in torsion, punch- G= -= : d, (3)
ing-shear failure of slabs, failure of pipes. etc.'' 6  AE,

To determine parameters B and ,, Eq. (1) may be
transformed to the form in which ao = al/r, a = notch depth; r = radius of the
ACI Materials Journal / January.February 1990 15
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Fig. 6 - Results from tests of concrete sC imens: (a)linear regression, and (b) size effect ccmn.() Fig. 7 - Results from tests of mortar specimens. (a)
linear regression, and (b) size effect

Table 2 - Fracture energy G, lb/in. (N/m)
Mix________Mode____ Mode____ curve). The plots at the top show the regression line,
Moncrete j M39) 6.30(1104 M.which yields the mean values of the parameters of the

Concrete 0.22 (39) I 6.30 (104) 0.61 (107) size-effect law.
Mortar 0.13 (23) 3.34 (585) 1.01 (in) The fracture-energy values obtained for concrete in

this manner pertain to the age of 35 days. They were
cylinder; E, = modulus of elasticity of concrete; , = then transformed to 28 days, by using Balant and Oh's
direct tensile strength of concrete; A - 1(B).) - empirical formula" G, - (2.72 + O.O214, ) f," dIE,,
slope of the regression line as already defined; g(a) - which yields Gf(28) - 0.9760f (35). The plots in Fig. 6
nondimensional energy release rate of the specimen ac- and 7 correspond to the 28-day values.
cording to the linear elastic fracture mechanics, which The values obtained for fracture energy are given in
can be found for the basic specimen geometries in text- Table 2. For comparison, Table 2 also indicates the
books and handbooks,"" |1 and can in general be deter- values for Modes I and II previously obtained from
mined by linear finite element analysis. For the notch tests of essentially the same concrete and mortar.
depth of d/4(i.e., c4 - 0.5), o (a.) -a 6.99 (1 + u) Aside from the fracture energy, the size-effect law
where u - Poisson's ratio. In the calculations it was makes it possible to estimate the effective length c, of
assumed that u - 0.18. the fracture process zone, using the formula'

The tensile strength was not measured but was esti-
mated from the formula 3, - 6Z,9 ', where f, and f, are dog(a)
in psi (6895 Pa) andf = standard cylindrical compres- C, = g'(a (4)
sion strength. Since the slope A of the linear regression
plots is proportional to f,. an error in 7, has no effect
on the fracture-energy values, in which g' (a.) = dg(a)/da at a = io. The value of cf

The measured maximum torques arc plotted in Fig. 6 represents the effective length of the fracture process
and 7. The plots at the bottom demonstrate that the zone for an infinitely laree specimen, which is a mate-
measured r, agrees with the size-effect law (solid rial constant. The present test results yield the values
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given in Table 3. For comparison, this table also shows Table 3 - Effective fracture process.zone length
the ct values obtained from the previous test results' for c,, in. (mm)
Mode I. Notice the good agreement between Mode I Mix Mode ! Mode III

and Mode III results, which suggests that c, should in- Concrete 0.60 (5) 0.66 (17)
deed be a material property. Theoretically, the ob- Mortar 0.06.4) 0.04(1.0)
tained value of c, applies to an infinitely large speci-
men, but because Balant's law is not sufficiently accu-
rate for an inifinite size range, the value obtained for cf -

applies to a size about ten times larger than that of the I-

largest specimen tested. r ,

ANALYSIS OF RESULTS - - - --

According to the size-effect law, the test results for (C.) I (b)
mortar should be closer to linear elastic fracture me-
chanics than those for concrete, for the same speci- N"
mens. This is confirmed by the present results; see Fig. •-U

6 and 7 where the data points for mortar lie closer to = 2 s

the straight line asymptote of linear elastic fracture me-chanics, whose slope is - 0.5. (d)
Comparison with the Mode 1I and Mode I fracture

energies (Table 2) reveals a surprise. The values of G)"
might have been expected to be about the same as 0,",
and much larger than G,. But this has not turned out (.)
to be the case; rather, the measured 0.I," is much

smaller than G", but larger than Gfl. The mechanism to
explain this finding will require deeper study, but we (e)
shall attempt an approximate analysis. N7

A clue to the source of this discrepancy is provided ,-, -
by the experimetal observation that the results of shear
fracture tests are very sensitive to the restraint of the
specimen in the direction normal to the fracture plane
(the axial direction of the cylinder for the present tests).
In pilot tests, it was observed that very different results Fig. 8 - Transverse stresses and inclined microcrack-

can be obtained if friction at the supports is not elimi- ing induced in the fracture-process zone in shear-frac-

nated. The confinement of the shear fracture zone due ture tests

to an axial friction force produced at the supports canno dubt ais thevale of0, sgniicanly.we should have Gil' = 0,"' = 0,' = shear fracture en-no doubt raise the value of G f significantly.er y( ga d sso th m d )su h h t
For the sake of comparison, another series of tor-

sional tests of Mode III fracture was carried out with
different equipment-a large triaxial torsional testing O' =(N) (5)

machine, which was very stiff because its 8.51 in. dia-
meter test chamber is designed to resist chamber pres- That Gil' must in general strongly depend on N, has
sures up to 20,000 psi (138 MPa) plus axial forces up to already been corroborated in previous work' by finite
1,100.000 lb (4.89 maN). It was not surprising that the eement analysis of Mode II fracture tests. In fact, that
tests in this machine, which were made at essentially study made the even more general assumption that both
zero axial displacement at the ends of the cylindrical Mode I and II fractures can be modeled by the same
specimen, showed a different mode of failure, in which stress-strain relation for the fracture process zone. The
the failure surface was conical rather than planar (see reason for different effective values of the fracture en-
Fig. 3). The axial restraint engenders an axial compres- ergy in Modes I and II can be found in the fact that, in
sive force, which is known to be capable of altering the shear, the microcracks in the fracture process zone are
failure mode. The failure with a conical surface is not parallel to the fracture plane, but are inclined to it

nevertheless still of a shear type. by angle a (see Fig. 8(e) and (f)]. The column of intact

To explain the foregoing observations, it is logical to material between adjacent inclined cracks carries

assume that GUIl as well as Gf" is not a material con- compression force F,. This force has an axial com'o-
stant, but rather a material function o(N,) of the nor- nent F, which must be resisted together by the tensile

mal force N, across the fracture process zone of length stresses in the undamaged portions of the ligament [a,
c,, normal to the shear fracture plane (N, is a force per in Fig. 8(a)] and by the axial force provided by the sup-

unit length of the crack-front edge and has the dimen- port. If axial displacements are prevented, the inclined

sion Nlm). The function o (N,) should be the same for compressive forces F, are high and can offer a large re-

Mode II and Mode III shear fractures. For the same N, sistance to shear. Hence, he apparent values of frac-
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:ure energy must be large. If the axial displacements are an infinitely large specimen, we must assume that
free, the inclined compression forces must vanish and 1 .4 c, and cf 4 r,; therefore
thus cannot contribute to transmit shear stresses across
the fracture process zone, and then the apparent value C" ,(
of shear fracture energy is small. =k, - (I0)

The action just described was exhibited by a finite G/,

element model with a tensile softening stress-strain re-
lation for the fracture process zone. Using such a According to the results of the tests made (Table 2),
model, Balant and Pfeiffer' showed that the results of G)'/G' = 10 for concrete and 3.3 for mortar. This ra-
both Mode I and Mode II fracture tests can be matched tio can be obtained from Eq. (10), given that c0 = r.,
with the finite element program using the same mate- and if we assume intuitively that k, = 1.5, c, =
ral properties. In this finite element analysis, one does 0.7 c., and r, = 0.21 c, for concrete; and k2 =

not directly use the fracture energy. Rather, one uses a 1.5, c, = 0.70 c0, and r, = 0.64 co for mortar. These
triaxial stress-strain relation such that the area under values do not appear to be out of the range of the rea-
the implied uniaxial tensile stress-strain diagram equals sonably expected behavior. So we may conclude that
G/ w,, where w, = effective width of the fracture pro- the difference between Gf' and G," is not all that sur-
cess zone. prising and might be explicable by a rational theory.

As a crude approximate description of the role of the But further tests as well as finite element studies will be
confining force N1, we may write the longitudinal equi- required.
librium condition assuming a zero axial resultant in the The previous analysis is based on the assumption of
cross section. With the notation a,= average tensile a linear dependence of Gt on N.. In reality, this depen-
stress in the tensile zone of the ligament and r, = ra- dence must be expected to be nonlinear. Materials such
dius of this zone, and the equilibrium condition is wrf as concrete exhibit a brittle-ductile transition at a cer-

= - 2irr N, or N, = - a, ,j/r where r2 - radius up tain confining pressure p.; for ordinary concrete, ap-
to the location of the compression force resultant N, in proximately, pd - 10,000 psi (69 MPa). Above this
the fracture process zone [Fig. 8(a) and (b)). Ve may pressure value, there is apparently no strain softening
assume that r2 = kzr, where k2 = empirical constant and no fracture, and so Gf, -. o. To satisfy this condi-
greater than I but close to I. Approximately, we may tion, the nonlinear dependence of Gf on N, may be as-
write 'a - k,7, where k, - empirical constant of the sumed to have the form
order of 1, perhaps k, = 0.5 to 1.0, and 7, - direct
tensile strength of concrete. Solving for N,, we get G, - ON) - a,(N - NU) + a2 (N < N,) (II)

N, - - r, (6) where a,, a,, and n = empirical positive constants and
N, = c,P,,. Constants a, and a may be determined
from two conditions: (1) G = 0 for N, = c7f , and (2)

For the previous Mode II fracture tests of Batant and Of,= (/o for N = 0 where (f, = shear fracture en-
Pfeiffer,' a similar equilibrium condition for the frac- ergy at zero normal force across the ligament. This
ture-plane cross section yields tensioned portion of the yields
ligament (Fig. 8(c) and (d)J. Setting again a, k,f we

get (7 - (7 (-e¢,- -" (No - N) (2
N, -ck,1 (7) (-H6)* - (NO -

Let us assume that functioa d(Nf) can be approximated where No = cff,. This nonlinear form of the function
linearly, i.e., *(N) - (70 - kfN, where Go shear O(N) can considerably alter the values in Eq. (10)
fracture energy at zero confining stress and k- non- which correspond to the observed ratio }"IGjP.
dimensional constant. For N, - cff the fracture en- The foregoing analysis has one weakness in that the
ergy should become approximately zero, and so we size-effect law in Eq. (1), which underlies the determi-
have nation of fracture energy, might not be valid when the

value of the normal force N, across the fracture-pro-

6(]N,) - k (cf! - Nr) (8) cess zone is different for various sizes. If this were so,
a more sophisticated extrapolation to infinite size would
be required to obtain the fracture energy value. It re-

Using Eq. (6) and (7) in Eq. (8), we obtain mains to be seen whether this aspect can significantly
affect the present results for the practical size range.

4 c +  ,, (9)
GYf c1 + rK,/214 CONCLUSIONS

I. The size-effect metPod can be used to determine
Since the fracture energy is defined for the limit case of the shear fracture energy of concrete. A cylinder with a
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APPENDIX A7

SHOULD DESIGN CODES CONSIDER FRACTURE MECHANICS SIZE EFFECT?

By Zdenek P. Batant

Professor of Civil Engineering
Center for Advanced Cement Based Materials

Northwestern University-Tech 2410, Evanston, Illinois 60208-3109

Abstract.- The paper reviews recent theoretical results and analyzes

experimental data on size effect in brittle failure, which causes release of

potential energy in reinforced concrete structures. After summarizing the

size effect law and explaining the novel concept of a brittleness number, the

results of recent Northwestern University tests of diagonal shear failure,

punching shear failure, torsional failure and pullout failure are discussed.

These results, which were obtained on geometrically similar specimens with

sizes differing over a broad range, are found to be in e- zellent agreement

with the theoretical size effect law. The experimental evidence is much

stronger than that which was previously obtained by analyzing a large amount

of test results from literature, which were not obtained on geometrically

similar specimens and were limited to a narrow size range. It is also found

that the test data on diagonal shear disagree with Weibull-type theory of the

size effect, thus strengthening the theoretical argument against the use of

these statistical theories for concrete structures whose maximum load is much

larger than the cracking initiation load. The test results indicate that the

presently considered fracture mechanics size effect ought to be incorporated

into the formulas for the contribution of concrete to the ultimate load

capacity in brittle failure of concrete structures. It is shown that such

formulas can be based on the brittleness number. However, its prediction in

the absence of empirical data for the structure type of interest will require

some further research.



Introduction

It has long been known that ultimate loads of concrete structures exhibit

size effect. The classical explanation has been Weibull's weakest-link theory

which takes into account the random nature of concrete strength (Weibull,

1939; Zaitsev and Wittmann, 1973; Mihashi and Zaitsev, 1981; Mihashi, 1983;

and Carpinteri, 1986). However, for reasons briefly explained in the

Appendix, it now appears that the statistical theory does not suffice to

describe the essence of the size effect observed in brittle failures of

reinforced concrete structures and plays only a secondary role. The main

aspect of the size effect in this type of failures is det rather

than statistical, and is due to the release of the stored potential energy of

the structure into the front of the cracking zone or fracture. This

phenomenon is properly described by fracture mechanics in its recently

developed nonlinear formulation which takes into account the distributed

nature of cracking at the fracture front.

The purpose of this paper is to analyze the existing evidence as well as

review some recent results obtained at Northwestern University.

Mathematical Description of Size Effect

The size effect is defined by comparing the ultimate loads (maximum

loads), Pu 9 of geometrically similar structures of different sizes. This is

done in terms of the nominal stress aN at failure. When the aN-values for ge-

ometrically similar structures of different sizes are the same, one says that

there is no size effect. The size effect represents a dependence of aN on the

structure size (characteristic dimension), d. For two-dimensional similarity,

*N- Pu/bd, and for three-dimensional similarity, aN - Pu/d2; b - thickness of

a two-dimensional structure. The characteristic dimension, d, may be defined

as any dimension of the structure, e.g., the depth of a beam or its span,

since only the relative values of aN matter.
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According to plastic limit analysis, as well as elastic analysis with

allowable stress or any theory that uses a failure criterion in terms or

stresses or strains, aN is independent of the structure size. This can be

illustrated, e.g., by the elastic and plastic formulas for the strength of

beams in bending, shear or torsion (Bazant, 1984).

Another theory of failure, conceived by Griffith (1921) and introduced to

concrete by Kaplan (1961), is fracture mechanics. It was Reinhardt (1981a,b)

who proposed that fracture mechanics should be used to describe the size

effect in diagonal shear failure. He also showed that the size effect of

classical, linear elastic fracture mechanics agrees reasonably well with some

tests, although later it was found that nonlinear fracture mechanics is

necessary in general.

In the linear form of fracture mechanics, in which all the fracture

process is assumed to be happening at a point -- the crack tip -- the size

effect is the strongest possible. In the plot of log aN vs. log d, it is

described by an inclined straight line of slope - 1/2 (Fig.l), provided that

the cracks at the moment of failure of geometrically similar structures of

different sizes are also similar. This is true regardless of the structure

shape.

Concrete structures in reality exhibit a transitional behavior between

the size effect of strength or yield criteria (i.e., no size effect),

represented in Fig. 1 by a horizontal line, and the size effect of linear

elastic fracture mechanics; see the curve in Fig. 1. This size effect is

generally ignored by the current design codes, but it now appears very

important.

The aforementioned transitional size effect can be most simply explained

by considering uniformly stressed rectangular panels of different sizes, as

shown in Fig. 2. Each panel is assumed to have a weak spot in the middle of

the left side, from which fracture originates. For a brittle heterogeneous

3



material such as concrete, it is important to take into account a relatively

large zone of distributed cracking at the fracture front. The size of this

zone is not proportional to the structure size but is approximately related to

the maximum aggregate size. In the simplest approximation, it may be assumed

that the width, h, of the cracking band at the fracture front is approximately

constant, independent of the structure size. One may also assume the length

of the fracture, a, to be proportional to dimension d of the structure, i.e.,

a/d - constant.

Formation of a fracture with crack band of thickness h and length a may

be imagined to release the strain energy of density aN2/2E from the cross-

hatched area in Fig. 2 (E - elastic modulus of concrete). When the fracture

extends by Aa, the additional strain energy that is released into the fracture

front comes from the densely cross-hatched strip of horizontal dimension Aa.

Obviously, the larger the structure, the larger is the area of the cross-

hatched strip, which is given by hAa + 2kaAa where k - empirical constant

depending on the structure shape. Now it is important to note that in a

larger structure the energy that is released into a certain small extension Aa

of the fracture comes from a larger area. Since the energy dissipated by

fracture per unit length (and unit thickness) is approximately equal to the

fracture energy, Gf, which is a material property, the load for a larger

structure must be less so that the total energy release from a larger area

would be the same. Hence the size effect.

The strain energy released from the densely cross-hatched strip is (h~a +

2baAa) a2/2E. Setting this equal to the dissipated energy GfbAa, one obtains

the size effects law (Bazant 1984):

a N - P(l + P, - d/d 0  (i)
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in which P is called the brittleness number of the structure and f represents

the direct tensile strength. It must Le kept in mind that Eq. I is only

approximate, valid within a size range of up to about 1:20. For a broader

size range, a more complicated formula would be required. Nevertheless, the

accuracy and size range of Eq. 1 seems sufficient for most practical purposes.

Since from some viewpoints the length of the distributed cracking zone at

fracture front is more important than the width, it is interesting to note

that a similar derivation, with the same result (Bazant, 1984; Bazant and

Kazemi 1983) can be made for a sharp line crack having a crack band of

constant length at the front. For more complicated structural geometries, the

foregoing type of reasoning gets difficult, however, Eq. 1 can be derived

generally by dimensional analysis and similar arguments (Bazant, 1984). This

general derivation rests on two basic hypotheses: (1) The propagation of a

fracture or crack band requires an approximately constant energy supply per

unit length and width of fracture, and (2) the potential energy released by

fracture from the structure is a function of both the length of the fracture

and the size of the cracking zone (fracture process zone) at the fracture

front.

The transitional size effect curve in Fig. 1 is also obtained by

numerical models of the microstructure, such as the random particle model. In

this model, a system of aggregate particles is generated randomly and each

large aggregate particle is considered as a finite element interacting with

its neighbors through a contact element representing the contact zone (Bazant,

Tabbara, Kazemi, and Pijaudier-Cabot, 1989). Furthermore, nonlocal finite

element models in which localization of cracking is restricted to a zone of a

certain minimum size, also exhibit the same transitional type of size effect,

while ordinary finite element codes are incapable of representing it (Bazant

and Lin, 1988; Bazant and Ozbolt, 1989).
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Eq. 1 has been extensively verified experimentally for both fracture test

specimens and reinforced concrete structures. In the case of test specimens,

similarity of the fracture shape and length is enforced by providing

geometrically similar notches in specimens of different sizes. In real

concrete structures, from which notches are absent, Eq. 1 is applicable only

under the following two additional hypotheses: (3) the failure modes (i.e.,

fracture shapes and length) of geometrically similar structures of different

sizes are, at the moment of maximum load, also geometrically similar, and (4)

the structure does not fail at crack initiation. But this is not a serious

limitation; a good design practice of course requires the maximum load to be

much higher than the cracking initiation load, and this is to some extent also

enforced by design codes.

The characteristic of the failure process which gives rise to the size

effect is the propagating nature of failure. In plastic limit analysis the

failure is always nonpropagating, simultaneous, with all the parts of the

structure moving simultaneously in proportion to one parameter. The typical

characteristic of such failures is that the load-deflection diagram, after

reaching the maximum load, exhibits a horizontal plateau. It can be shown in

general that when the horizontal plateau is lacking, i.e., the load decreases

after the peak with increasing deflection, the failure cannot be simultaneous

but must be propagating. Propagating failures need to be generally described

by fracture mechanics, and they always exhibit size effect (of the energy

release type).

Brittleness Number

Distinctions between brittle and ductile failures have long been

emphasized in concrete textbooks, however the meaning of brittleness has been

left hazy, unquantified. The notion of brittleness is closely connected with

the size effect. Brittleness increases with size.' It can be generally shown
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that in small structures the load decreases relatively slowly with deflection

after the peak, while in a similar large structure the load drops rapidly

after the peak, and in a very large structure the load-deflection curve even

exhibits the so-called snapback instability in which the load-deflection curve

becomes vertical after which the failure is dynamic. Recognizing this

connection, various authors, including Gogotsi, et al. (1978), Homeny, et al.

(1980) for ceramics in general, and Carpinteri (1982) and Hillerborg (1985 )

for concrete in particular, proposed brittleness to be quantified by some

brittleness number depending on the structure size, d. Unfortunately,

Gogotsi, Homeny, Hillerborg, Carpinteri's brittleness numbers are not

independent of the structure geometry and thus cannot be used as universal,

absolute characteristics of brittleness (e.g., a brittleness number equal to

2 could mean a very brittle behavior for one structure geometry and a very

ductile behavior for another geometry). These numbers only allow comparing

the brittleness of similar structures.

A universal, absolute measure of brittleness is offered by the size

effect law (Bazant, 1984), although it is only approximate since the exact

size effect law is not known. As already mentioned, the ratio p - d/d 0 may

be taken as a brittleness number (Bazant, 1987; Bazant and Pfeiffer, 1987).

The value d-d0 (or P - 1) corresponds in the size effect plot of log aN vs.

log d to the point where the horizontal asymptote for the strength or yield

criterion intersects the inclined asymptote for the linear elastic fracture

mechanics (Fig. 1). For P : 1, the behavior is closer to plastic limit

analysis, and for 0 1 it is closer to linear elastic fracture mechanics.

With a practically sufficient accuracy, the nature of structure response and

the type of analysis may be characterized as follows (Bazant, 1987):

fl < 0.1 plastic limit analysis 1
0.1 5 :S 10 nonlinear fracture mechanics (2)

> 10 linear fracture mechanics
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For P < 0.1, the error of plastic limit analysis is < 4.7% of aN, and for f >

10, the error of linear elastic fracture mechanics is < 4.7%, compared t: the

nonlinear fracture mechanics solution in which the finite size of the fracture

process zone (cracking band) is taken into account. If an error under 2% is

desired, then the nonlinear range must be expanded to 1/25 s # : 25.

Let us now consider the determination of the brittleness number when size

effect data are absent. Two formulas have been derived for this purpose, one

based on matching the size effect law to the asymptote of plastic limit

analysis, and the other one based on matching the size effect law to linear

elastic fracture mechanics. They read

f2
- B tg(ao)EGf  (4)

g(O0) d (5)
#g'(a0 ) cf

in which g(a0 ) is the nondimensional energy release rate corresponding to the

initial relative crack length aO- a0d according to linear elastic fracture

mechanics, g'(aO) is its derivative, and cf is the effective length of the

fracture process zone (defined for extrapolation to a specimen of infinite

size), which is a material property.

The first formula, Eq. 4 (Bazant, 1987; Bazant and Pfeiffer, 1987), is

more accurate for small sizes, and the second formula, Eq. 5 (Bazant and

Kazemi, 1988), is more accurate for large sizes. With either formula, cal-

culations of the brittleness number necessitates knowing the shape and length

of the equivalent linear elastic crack at maximum load. This crack is

precisely defined only by extrapolation to a similar structure of infinite

size. For typical concrete structures it is not yet clear at present what
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shape and length this equivalent crack should have. However, once this shape

and length are known, g(a0) and its derivative can easily be calculated with a

linearly elastic finite element program, and could easily be tabulated for

typical structures. For the calculation of B, the existing design formulas

based on plastic limit analysis can of course be used.

It might also be that simple empirical formulas could be obtained for

various typical structure shapes to determine the value of the transitional

size do, e.g., in relation to the cross section dimension and the maximum ag-

gregate size, da* Then the brittleness number immediately results as P - d/dO.

In view of the universality of the size effect law in Fig. I and the

brittleness number, it appears that a simple adjustment can introduce the size

effect into the existing code formulas based on limit analysis. It suffices

to take the existing formula for the nominal stress due to concrete at ulti-

mate load, vu, and replace it by the expression:

vu( 1 + fi)h ( avumin) (6)

min

Here we indicate that there might be a lower limit vu on the nominal

strength, since there can be a transition to some nonbrittle frictional

failure mechanism (it seems, for example, that this might be the case in the

Brazilian split-cylinder test).

Previous Tests of Brittle Structural Failures

After the size effect law has been formulated, much effort has been

devoted to comparing and validating it on the basis of the test data in

literature. The efforts were especially focused on the diagonal shear failure

of longitudinally reinforced concrete beams (Bazant and Kim, 1984, 1985;

Bazant and Cao, 1986; Bazant and Sun, 1987). The latter study included

essentially all the experimental data that could be extracted from the
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literature, consisting of 461 beam tests. After appropriately eliminating the

effect of numerous other factors according to various known approximate

formulas, the existence of a size effect has been clearly demonstrated. It

was also shown that incorporation of the size effect law in Fig. 1 into the

existing ACI or CEB-FIP design formulas for the contribution of concrete to

the ultimate strength of beams in diagonal shear brings about a distinct

improvement, reducing the coefficient of variation of the deviations of the

test results from the design formula.

Unfortunately, however, the results of these studies have not allowed any

strong conclusions. The reason has been that, even after filtering out the

effects of other factors, the statistical scatter has been enormous. The

tests have been done at various laboratories, on various concretes, and on

beams of various geometries. Most tests did not include various sizes. Those

few test series that did (Walraven, 1978; Bhal, 1968; Kani, 1967; Leonhardt

and Walther, 1962; Taylor, 1972; Chana, 1981; R~sch et al., 1962) did not

include a sufficiently broad range of sizes and, most seriously, did not use

geometrically similar specimens. The same is true of the latest and largest

study of the size effect in diagonal shear presented by Iguro, Shioya, Nojiri

and Akiyama (1984).

The lack of geometric similarity in the previous test series has been the

most serious impediment against their exploitation for the present purposes.

To extract information on the size effect, adjustments for all the other

influencing factors had to be made first. But since the influences of various

other factors are known only approximately, a considerable error is inevitably

introduced by such adjustments. This causes enormous scatter, which obscures

the underlying trend of the size effect (Bazant and Kim, 1984, Bazant and

Cao, 1984, Bazant and Sun, 1984, Bazant and Sener, 1984).

Aside from unprestressed beams without stirrups, the previous studies of

test data from the literature dealt also with prestressed beams without
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stirrups and with unprestressed beams with stirrups. In the latter case, the

portion of the carrying capacity due to stirrups is of course free of size

effect as the stirrups fail in a ductile manner. However, despite

considerable scatter, the analysis of the data showed that, in contrast to the

current design approach, the carrying capacity due to stirrups (which exhibits

no size effect) is not simply additive to that due to concrete (which does

exhibit a size effect). Rather, the presence of stirrups appears to have a

strengthening influence on the portion of the carrying capacity due to

concrete.

Similar problems have been encountered in an attempt to evaluate the size

effect from the existing data on punching shear failures and torsional

failures although, for the latter, the test results of Hsu (1968), Humphrey

(1957), and McMullen and Daniel (1975) provided at least a clear indication of

the existence of a significant size effect.

To sum up, despite a clear revelation of size effect, the enormous

scatter and narrow size range of the data from the literature has made it

impossible to conclude which size effect theory is the correct one. For

example, the present size effect law fits most data from the literature no

better than a formula based on Weibull-type statistical theory. This state of

affairs, for example, permits one to conclude on the basis of the test data of

Iguro et al. (1984) that the Weibull-type theory should be acceptable for

diagonal shear failures of beams, even though its use is in fact questionable

on physical grounds as already mentioned.

Evidence from New Tests of Geometrically Similar Structures

In view of the aforementioned limitations of the existing experimental

evidence, a systematic testing program of brittle failure of reinforced

concrete structures has been initiated at Northwestern University. To keep

the costs down, all the tests were on concrete with reduced-size aggregate
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(maximum sizes 3/8 or 1/4 in.). The tests included the diagonal shear failure

of beams without stirrups (Bazant and Kazemi, 1989), the punching shear

failure of circular slabs reinforced at bottom surface (Bazant and Cao, 1987),

the torsional failures of plain and longitudinally reinforced concrete beams

(Bazant, Sener and Prat, 1988), and the pullout failure of reinforcing bars

(Bazant and Sener, 1988). The results of these tests, whose details are given

in the aforementioned articles, are shown as the data points in Fig. 3-6. The

data for punching shear (Fig. 4) have the size range 1:4, and so have the data

for torsion (Fig. 5a,b) and the data for pullout (Fig. 6).

The tests of diagonal shear consisted of two series. In the first series

(Fig. 3a), in which the size range was 1:4 and in which the longitudinal bars

were straight, it was found that the diagonal shear failure was accompanied by

pullout failure of bars, marked especially for the smallest size. Therefore a

second series (Fig. 3b) was conducted on beams in which the bars had right-

angle hooks at the ends, which prevented the pullout. The second series had

the size range of 1:16. The beam specimens were similar in two dimensions,

i.e., they had the same thickness for all the sizes.

From Fig. 3-6 it is clear that there is a strong size effect. It is also

noteworthy that in the logarithmic scales the size effect curve does not tend

to level off at large sizes, as predicted by fracture mechanics. The optimal

fits according to Bazant's law are shown as the solid curves, and it is seen

that the agreement is quite good, especially in view of the inevitable

statistical random scatter of concrete strength in brittle failures. While

the aforementioned studies of test data from literature only confirm the

existence of size effect but could not decide which formula for the size

effect is the correct one, the comparisons in Fig 3-6 can be said to support

Eq. 1. This is especially clear for the second series of the diagonal shear

tests (Fig. 6b), thanks to its broad size range.
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The second series appears to represent the first test results that show

that Weibull-type statistical theory does not apply. According to this

theory, the strongest size effect in two dimensions corresponds to a straight

line of slope - 1/6, whose optimal fit to the present data is shown as the

dashed line in Fig. 3b. One can see that this line clearly disagrees with the

trend of the data and gives too weak a size effect for the large sizes. (This

is true provided one takes the value of Weibull modulus as m - 12, in

agreement with the results of uniaxial tests, and assumes the Weibull

threshold strengths to be aO - 0; if this threshold were larger than 0, the

size effect would be even milder than shown by the dashed line in Fig. 3b,

exhibiting an approach to a horizontal asymptote, as shown by the dotted

curve.)

The essential parameter which determines the strength of the size effect

is the transitional size do. This parameter represents a combination of a ma-

terial property with the effect of structure shape. The tests in Figs. 3-6

show that its values vary greatly. From the present limited results, it does

not seem possible to give a simple empirical formula for calculating do.o

Thus, parameter d0 has to be predicted from Eq. 4 or 5 (d0 - d/#). However,

further research will be needed to determine the shape and length of of the

equivalent linearly elastic crack at maximum load, which is needed to

calculate g(aO0 ). Eventually, of course, geometrically similar tests will have

to be made on real-size beams and slabs with full-size aggregate.

Other Uses of Size Effect Law and Ramifications

Knowledge of the size effect law is as useful for determining material

fracture properties as it is for extrapolating laboratory data to real

structures. The material fracture properties needed for finite element

analysis of concrete fracture include the fracture energy and the effective

length of the fracture process zone (alternatively, from these two properties
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one can determine the critical cracktip opening displacement used as a

fracture parameter in some models).

In laboratory fracture specimens of typical sizes, the problem is that

the fracture process zone extends over a larger part of the cross section.

Consequently, the size and shape of the fracture process zone is greatly

influenced by the boundaries, i.e., the shape of the specimen. This makes it

very difficult to get unambiguous results by the usual adaptations of linear

elastic fracture mechanics. The problem, however, disappears when one

extrapolates the results to a specimen of infinite size. The point is that,

in a specimen of infinite size, the fracture process zone occupies a

negligibly small part of the structure volume, and so most of the structure is

elastic. As one basic result of linear elastic fracture mechanics, the

asymptotic stress field around the crack tip is exactly the same for any

structure geometry. Thus, the fracture process zone in an infinitely large

specimen is exposed always to the same stresses at its boundary, and so it

must always take the same size and shape, and develop the same stress and

strain distributions. Consequently, the fracture energy as well as the

effective length of the fracture process zone are constants, independent of

structure shape. Thus, the definition of fracture energy and the effective

length of the process zone are unambiguous, exact (Bazant, 1987).

The only problem is that the size effect law that we know (Eq. 1) is only

approximate, which means that the fracture properties obtained on the basis of

Eq. 1 are not exact. However, they should be sufficient for most practical

purposes since Eq. 1 is applicable over a size range up to about 1:20. By

matching the infinite-size extrapolations according to Eq. 1 to the formulas

of linear elastic fracture mechanics, simple expressions for determining the

fracture energy as well as the effective length of the process zone have been

devised (Bazant, 1987; Bazant and Pfeiffer, 1987; Bazant and Kazemi, 1988).

By testing fracture specimens of very different geometries, it was
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demonstrated that the material parameter values obtained by the size effect

method are indeed approximately independent of the structure shape.

The size effect method of determining material fracture properties is not

only unambiguous, but also the simplest, since it requires one to measure only

the maximum load values of specimens of various sizes, which can be obtained

even with the most rudimentary equipment. Other methods require measurement

of the post-peak softening response and unloading response, and necessitate a

closed-loop displacement control which calls for more sophisticated equipment.

Another important question is the effect of aggregate Aize, and more

generally the influence of concrete composition. In principle, the size

effect law (eq. 1) is valid only for specimens of the same material, which

also implies the same aggregate size distribution. While recognizing that it

is strictly impossible to change aggregate size without changing other

composition parameters of concrete, it was suggested that the value of do

should be roughly proportional to the maximum aggregate size da, and that the

value of f' in Eq. 1 should be decreased as the aggregate increases. The

formula f - ft[l + (c0/da) 
1/2  has been proposed for this purpose by Bazant

0
(1985), in which f and co - constants. But this formula does not take into

t 0

account the effect of aggregate shape, which might be very important according

to the recent tests by V. Saouma at the University of Colorado, Boulder

(private communication, 1989). This aspect is especially important for

concrete dams, for which introduction of fracture mechanics into the failure

analysis is imperative.

The finite element codes for concrete structure which normally utilize

the smywd cracking concept, generally exhibit no size effect, which is an

unacceptable feature of these codes. The finite element codes based on linear

elastic fracture mechanics represent too strong a size effect. The basic

requirement of acceptability of a finite element code for concrete structures
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is that the code should exhibit a transitional size effect. This is achieved

either by codes based on nonlinear fracture process zones (e.g., Hillerborg's

fictitious crack model, or the crack band model) or more generally by nonlocal

finite element codes. To documentAFig. 7 compares the results of a finite

element code with nonlocal smeared cracking (Bazant and Lin, 1988) to test

results.

Conclusions

1. While the hundreds of test data available in the literature exhibit

so much scatter that they provide only a relatively weak and ambiguous

evidence for the size effect, merely suggesting its existence, the new

Northwestern University tests of geometrically similar specimens prove the

existence of a strong size effect and also indicate its approximate law.

These new tests include the diagonal shear failure of beams, punching shear

failure of slabs, torsional failure of beams, and pullout failure of bars. In

view of this evidence, the existence of size effect must be suspected for all

other brittle failures of concrete structures, e.g., the failures of splices,

anchors and anchorages, the shear failure of deep panels, the cryptodome

failure of the top slab of a reactor vessel, the failure of pipes, and the

failure of concrete dams.

2. The size effect observed in the Northwestern University tests agrees

quite well with the size effect law proposed by Bazant (Eq. 1). This means

that the size effect is caused by the fact that, the larger the structure, the

greater is the release of stored potential energy of the structure into the

front of a propagating fracture or crack band front (provided that the nominal

stress due to load is kept he same), while about the same energy is required

for a unit advance of fracture front, regardless of the size.

3. Although verification by tests of real-size beams with full-size

aggregate will be necessary, it is already clear that the size effect due to
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potential energy release ought to be introduced into all the ultimate load

formulas for brittle failures in concrete design codes, as indicated in Eq. 6.

This means that the existing formulas which are based on the crack initiation

load (at which the present type of size effect is absent) should be either

replaced or better supplemented by formulas based on ultimate load, at which

the present size effect operates.

4. The size effect is inextricably linked to brittleness. The

brittleness, formerly a hazy concept, may be quantitatively characterized by

the brittleness number, 6, which, in.Bazant's definition, takes into account

the effect of shape. Generally, the values of the ultimate strength

contribution due to concrete (rather than steel reinforcement), as given by

the existing codes, should be modified by dividing them with the factor (1 +
. Further research, however, is needed to determine the transition size

d0 required for the calculation of P when test data for the structure geometry

of interest are unavailable. For this purpose it will be necessary to know

not only the final failure surface but also the shape and length of the

principal crack (or cracking band) at the moment of maximum load.

5. The test results for diagonal shear of beams disagree with Weibull-

type statistical theory, and thus support the theoretical arguments against

the use of these series for concrete structures for which the ultimate load is

much larger than the crack initiation load and a large fracture or cracking

zone grows prior to attainment of the maximum load.

6. The basic criterion for acceptability of a finite element code for

concrete structures ought to be that it must exhibit a transitional size

effect between plastic limit analysis and linear elastic fracture mechanics.
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ADvendix.-Is Weibull's Statistical Theory Aolicable?

Traditionally, the size effect has been explained statistically, by

randomness of strength. The failure load of a chain is determined by the the

strength of the weakest link in the chain, and the size effect arises from the

fact that the longer the chain, the smaller is the minimum strength that is

likely to be encountered in the chain. This explanation, which is no doubt

correct for the failure of long uniformly stressed bars, is described by

Weibull's weakest link statistics. Weibull-type theories have later been

extended to reinforced concrete structures in general. In these extensions,

the probability of failure of a structure and the mean nominal stress at

failure are:

Prob (P) - 1 - exp{ f a 0 J V (7)

V r

aN f I f[l-Prob(P)]dP (8)

0

in which V - volume of the structure, Vr - constant, m and a0 - material

constants representing the Weibull modulus and the threshold stress. The key

to applications of Weibull theory is function a(P,x), representing the stress

caused by load P at location x. Determination of this stress distribution is

easy only for structures which fail at initiation of macroscopic crack growth

(which is the case for most metallic structures, e.g. the failure of an engine

pylon in an aircraft). In such a case, the stress distribution is calculated

according to elasticity for a structure without any crack. Such a simplifica-

tion has been widely used in various Weibull-type analyses of concrete struct-

ures, but it is invalid.
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Due to reinforcement as well as the existence of strain softening,

concrete structures do not fail at crack initiation. In fact, design codes

require the failure to be sufficiently higher than the crack initiation load.

Consequently, a concrete structure undergoes pronounced inelastic deformation

and macroscopic crack growths prior to reaching the failure load. This causes

severe stress redistributions such that the distribution a(P,x) at failure is

very different from the elastic distribution at no crack. The aforementioned

stress distributions are difficult to determine, but the near-tip asymptotic

elastic stress field might be a good approximation at distances not too large

and not too small from the tip of the macrocrack at the moment of failure.

Now, due to singularity of this stress field, the stress values farther away

from the tip of a microcrack are relatively small and make in Fig. 8 a

negligible contribution to aN compared to the stresses in the volume of the

fracture process zone around the macrocrack tip. Due to this singularity, the

volume in which the strength values matter is quite small, usually a small

part of the entire volume of the structure. This causes the statistical size

effect to become weak.

In any event, the random statistical size effect comes only after the

size effect caused by the stress redistributions, which is deterministic,

would exist even if the strength showed no randomness, and is explained by the

release of stored energy associated with the stress redistribution. If there

is any statistical size effect, it can be manifested only by the remaining

portion of measured size effect which is unaccounted for by the fracture

mechanics size effect. But no such unaccounted portion is apparent from the

existing tests.

To sum up, explaining the size effect in reinforced concrete structures

only by Weibull-type statistical theory is incorrect. Nevertheless, a

combination of this theory with the size effect law in Fig. 1 (Bazant 1984)

might be an improvement.

20



REFERENCES

Mihashi, H. (1983), "A Stochastic Theory for Fracture of Concrete", in Fracture
Mechanics of Concrete, ed. by F. W. Wittmann, Elsevier, Amsterdam - New York,
pp. 301-340.

Hsu, T. T. C., "Torsion of Structural Concrete -Plain Concrete Rectangular
Sections", Torsion of Structural Concrete (SP-18), American Concrete Institute,
Detroit, Michigan, 1968, pp. 203-238.

Humphreys, R., "Torsional Properties of Prestressed Concrete", Structural
Engineer, Vol. 35, No. 6, London, UK, 1957, pp. 213-224.

McMullen, A. E., and Daniel, H. R., "Torsional Strength of Longitudinally
Reinforced Concrete Members of Rectangular Cross-Section", thesis presented to
West Virginia University, at Morgantown, W. VA, in 1972, in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

Leonhardt, F., and Walther, R., "Beitrage zur Behandlung der Schubprobleme in
Stahlbetonbau", Beton- und Stahlbetonbau (Berlin), March 1962, pp. 56-64 and
June 1962, pp. 141.149.

Rusch, H., Haugli, F. R., and Mayer, H., "Schubversuche an Stahlbeton-
Rechteckbalken mit gleichmassing verteilter Belastung", "Bulletin No. 145,
Deutscher Ausschuss fur Stahlbeton, Berlin, 1962, pp. 4-30.

Kani, G. N. J., "How Safe Are Our Large Reinforced Concrete Beams?", ACI Journal,

Proceedings V. 64, No. 3, March 1967, pp. 128-141.

Bhal, N. S., "Uber den Einfluss der Balkenhohe auf Schubtragfahigkeit von
einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung", Dissertation,

Universitat Stuttgart, 1968, 124 pp.

Walraven, J. C., "The Influence of Depth on the Shear Strength of Lightweight

Concrete Beams Without Shear Reinforcement", Stevin Laboratory Report No. 5-
78-4, Delft University of Technology, 1978, 36 pp.

Bazant, Z. P., (1984), "Size Effect in ,lunt Fracture: Concrete, Rock, Metal",
Journal of Engineering Mechanics, ASCE, Vol. 110, No. 4, pp. 518-535.

Bazant, Z. P. (1987), "Fracture Energy of Heterogeneous Materials and
Similitude", Proceeding, SEM-RILEM International Conference on Fracture of
Concrete and Rock, eds. Shah, S. P., and Swartz, S. E., Houston, pp. 390-402.

Bazant, Z. P., and Cao, Z., (1987), "Size Effect in Punching Shear Failure of
Slabs", ACI Structural Journal, Vol. 84, pp. 44-53.

Bazant, Z. P., and Sener, S., (1987), "Size Effect in Torsional Failure of
Concrete Beams", Journal of Structural Engineering, ASCE, Vol. 113, No. 10, pp.
2125-2136.

Bazant, Z. P., and Kazemi, M. T. (1989), "Size Effect on Diagonal Shear Failure
of Beams without Stirrups", Report No. 89-8/498S, Department of Civil
Engineering, Northwestern University, Evanston; submitted to ACI Structural

Journal.



Bazant, Z. P., and Kazemi, M. T., (1989), "Size Dependence of Concrete Fracture
Energy Determined by RILEM Work-of-Fracture Method", Report No. 89-12/B623S,
Center for Advanced Cement-Based Materials, Northwestern University, Evanston;
submitted to International Journal of Fracture.

Bazant, Z. P., and Kim, J. K., (1984), "Size Effect in Shear Failure of
Longitudinally Reinforced Beams", Journal of American Concrete Institute, Vol.
81, No. 5, pp. 456-468; discussion Vol. 82, No. 4, pp. 579-583.

Bazant, Z. P., and Lin, F.-B., (1988), "Nonlocal Smeared Cracking Model for
Concrete Fracture", Journal of Structural Division, ASCE, Vol. 114, No. 11, pp.
2493-2510.

Bazant, Z. P., and Ozbolt, J. (1989), "Nonlocal Microplane Model for Fracture,
Damage and Size Effect in Structures", Report No. 89-10/498N, Center for Advanced
Cement-Based Materials, Northwestern University, Evanston.

Bazant, Z. P. and Pfeiffer, P. A. (1987), "Determination of Fracture Energy from
Size Effect and Brittleness Number", ACI Materials Journal, Vol. 84, No. 6, pp.
463-480.

Bazant, Z. P., and Sener, S., (1988), "Size Effect in Pullout Tests", ACI
Materials Journal, Vol. 85, pp. 347-351.

Bazant, Z. P., Sener, S., and Prat, P. C., (1988), "Size Effect Tests of
Torsional Failure of Plain and Reinforced Concrete Beams", Materials and

Structures, Vol. 21, pp. 425-430.

Bazant, Z. P., and Sun, H.-H., (1987), "Size Effect in Diagonal Shear Failure:
Influence of Aggregate Size and Stirrups", ACI Materials Journal, Vol. 84, No.

4, pp. 259-272.

Carpinteri, A., (1982), "Notch-Sensitivity and Fracture Testing of Aggregate
Materials", Engineering Fracture Mechanics, Vol. 16, No. 14, pp. 467-481.

Carpinteri, A., (1986), "Mechanical Damage and Crack Growth in Concrete",
Martinus Nijhoff Publishers, Dordrecht.

Chana, P. S., (1981), "Some Aspects of Modeling the Behavior of Reinforced
Concrete under Shear Loading", Technical Report No. 543, Cement and Concrete
Association, Wexham Springs, pp. 22.

Gogotsi, G. A., Groushevsky, Y. L. , and Strelov, K. K., (1978), "The Significance
of Non-Elastic Deformation in the Fracture of Heterogeneous Ceramic Materials",
Ceramugia International, Vol. 4, No. 3, pp. 113-118.

Griffith A., (1921), "The Phenomenon of Rupture and Flow in Solids",
Philosophical Trans., Royal Society of London, Series, A, Vol. 221, pp. 163-
198.

Hillerborg, A., (1985), "The Theoretical Basis of Method to Determine the
Fracture Energy Gf of Concrete", Materials and Construction (RILEM, Paris), Vol.
18, No. 106, pp. 291-296.

22



Homeny, J., Darroudi, T., and Bradt, R. G., (1980), "J-Integral Measurements of
the Fracture of 50% Alumina Refractories", Journal of American Ceramic Society,
Vol. 63, No. 5-6, pp. 326-331.

Iguro, M., Shioya, T., Nojiri, Y., and Akiyama, H. (1985), "Experimental Studies
on Shear Strength of Large Reinforced Concrete Beams under Uniformly Distributed
Load", Concrete Library International, Japan Society of Civil Engineers, No. 5,
pp. 137-154.

Kaplan, M. F., (1961), "Crack Propagation and the Fracture of Concrete", American
Concrete Institute Journal, Vol. 58, No. 11.

Mihashi, H., and Zaitsev, J. W., (1981), "Statistical Nature of Crack
-Propagation", Section 4-2 in Report to RILEM TC 50 - FMC, ed. Wittmann, F. H.

Taylor, H. P. J., (1972), "The Shear Strength of Large Beams", Journal of
Structural Engineering, ASCE, pp. 2473-2490.

Weibull, W., (1939), "Phenomenon of Rupture in Solids", Ingenioersvetenskapsakad.

Handl., Vol. 153, pp. 1-55.

Zaitsev, J. W., and Wittmann, F. H., (1974), "A Statistical Approach to the Study
of the Mechanical Behavior of Porous Materials under Multiaxial State of Stress",
Proceedings of the 1973 Symposium on Mechanical Behavior on Materials, Kyoto,
Japan. 105 p.



CAPTIONS

FIG.l Size effect law.

FIG.2 Explanation of size effect due to stored energy
release from the cross-hatched areas.

FIG.3 Test results of Baiant and Kazemi (1989) for size
effect in diagonal shear failure of beams without
stirrups; (a) reinforcement allowed, (b)
reinforcement pullout prevented by hooks.

FIG.4 Test results of Baiant and Cao (1986) for size
effect in punching shear failure of circular
slabs.

FIG.5 Test results of Bazant, Sener and Prat (1989) on
size effect in failure of unreinforced beams and
longitudinal reinforced beams without stirrups.

FIG.6 Test results of Ba'ant and Sener (1988) on size
effect in pullout failure.
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ABSTRACT.- Presented is a particle model for brittle aggregate

composites materials such as concretes, rocks or ceramics. The model is

also applicable to the behavior of unidirectionally reinforced fiber

composites in the transverse plane. A method of random computer

generation of the particle system meeting the prescribed particle size

distribution is presented. The particles are assumed to be elastic and

have only axial interactions, as in a truss. The interparticle contact

layers of the matrix are described by a softening stress-strain relation

corresponding to a prescribed microscopic interparticle fracture energy.

Both two- and three-dimensional versions of the model are easy to

program, but the latter poses, at present, forbidding demand for computer

time. The model is shown to realistically simulate the spread of cracking

and its localization. Furthermore, the model exhibits a size effect on:

(1) the nominal strength, agreeing with the previously proposed size

effect law, and (2) the slope of the post-peak load-deflection diagrams

of specimens of different sizes. For direct tensile specimens, the model

predicts a development of asymmetric response after the peak load.
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Introduction

It is now generally accepted that inelastic deformation and fracture

of brittle heterogeneous materials such as concrete or fiber composites

can be adequately modeled neither by classical (local) continuum material

models nor by linear elastic fracture mechanics. Although nonlinear

fracture models and nonlocal continuum models can no doubt go a long way

towards a realistic description, they are inherently incapable of

capturing those phenomena which are strongly affected by the randomness

of material heterogeneity on the microscale and are localized to a small

but non-negligible region. The continuum models can describe well the

mean of the macroscopic material response but not Its variance. Even when

generalizations such as the stochastic finite element method are

considered, the assumed spatial randomness can only be correct in the

overall sense and cannot capture the effect of random local material

inhomogeneities on the localization of damage and failure. It is for

these reasons that a direct simulation of the random microstructure of

these materials is useful. As demonstrated by Zubelewicz and Balant

(1987), a model simulating the microstructure can describe progressive

distributed microcracking with gradual softening and with a large

cracking zone (large relative to the aggregate size).

The principal objective of the present investigation Is to study the

effect of the size of the specimen or structure on the maximum load, the

subsequent softening behavior, and the spread of the microcracking zone.

These are the key questions of fracture modeling. We will model the

material as a system of randomly configured circular particles. This

model is intended to simulate the behavior of concrete, but can also be

used for the behavior of unidirectional reinforced fiber composites in

the transverse p.Lane, with microcracks parallel to the fibers and
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spreading in the transverse direction.

The model we will introduce will be a modification and refinement of

that recently developed by Zubelewicz and Balant (1987). The idea of

particle simulation is an older one; it was proposed by Cundall (1971),

Serrano and Rodriguez-Ortiz (1973), Rodriguez-Ortiz (1974) and Kawai

(1980). These works dealt with rigid particles which interact by friction

and simulate the behavior of granular solids such as sand. This approach

was developed and extensively applied by Cundall (1978) and Cundall and

Strack (1979), who called it the Distinct Element Method. An extension of

Cundall's method to the study of microstructure and crack growth In

geomaterials with finite interfacial tensile strength was introduced by

Zubelewicz (1980, 1983), Zubelewicz and Mr6z (1983), and Plesha and

Aifantis (1983).

In this model we neglect the shear and bending interaction of

neighboring particles throughout their contact layers. With such a

simplification the present model becomes similar to the random truss

model of Burt and Dougill (1977). These investigators verified that the

truss model yields a realistic strain-softening curve but they did not

study the fracture mechanics nor the size effect aspects. Furthermore,

their method of system generation was not based on the idea of particles

with a prescribed gradation.

Simplified Interaction Among Particles

Two adjacent circular or spherical particles i and j (Fig. la) are

assumed to interact only in the axial direction, i.e., shear and moment

interactions In the contact zone are neglected. As a generalization of

the previous model by Zubelewicz and Balant (1987), the particles are

assumed to be elastic rather than rigid, characterized by elastic modulus

E . The particles are embedded In a softer matrix representing the

a



portland cement paste in the case of concrete, or a polymer in the case

of various fiber composites. The matrix is initially elastic,

characterized by elastic modulus E . The stiffness of the connectionm

between particles i and j is approximated as

S -S-1 + S- + -1 )_-1(I

in which

Si = EaAi/It Sm = EmAM/LM , S j = E Aj/L (2)

Li = 7ri, Lj = 7ri, Lm = L - Li - L (3)

Here ri and r are the radii of particles i and J, L is the distance of

their centers, and the interaction is assumed to correspond to a strut

(Fig. la) whose length is subdivided into segments Li, Lji and Lm

representing the particles and the interparticle contact layer of matrix.

The lengths of these segments are determined by an empirical factor 7,

for which the value 7 = 0.9 has been used. Ai , Aj and A are the cross

section areas of the strut segments describing the particles and the

matrix; they are defined for the two-dimensional case of circles as

A, = Aj = Am = 2 Min(r , r ) (4a)

and for the three-dimensional case of spheres as

2 2AI MA A = Min(r , r ) (4b)

The strut segment L m  representing the Interparticle contact region

of the matrix, is assumed to exhibit softening characterized by the

triangular stress-strain relation in Fig. Ic. The softening behavior,

which starts after reaching a certain specified strain c for the peakP

stress, is determined by the fracture energy Gn of the interparticle
f

layer (matrix and interface of matrix and particle) and is assumed to be

a material constant. The fracture energy is equal to the area under the

stress-strain diagram times length L (the fracture may, of course,

m
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localize, but strain c is defined as the average strain over length Lm ,
m in m istu

not as some local strain). Thus Gf = Lf Cf/2, with f= E c - strut

strength. From this, the strain at the end of softening (at which

complete interfacial crack forms) is

2Gfm
f = _ _ (5)

Lfm
M t

In the numerical simulation which follows, the values used are such

that cf > Cp even for the largest particle separations considered.

However, for a small fracture energy or for interactions between

particles that are sufficiently far apart, it could happen that Cf < Cy I

which would mean that the response would exhibit a snapback instability.

Although this would represent a complication for the numerical solution,

it could be handled with minor modification.

The tangential softening modulus Es (Fig. ic) is defined by the

relation E (Cf - C) = -fi , from which

fm
E = (6)
s Cf -C (p

If the length L is varied, the softening modulus E changes as shownm s

by the dotted line in Fig. ic , so as to preserve a constant value of Gfm

In the case of unloading, the matrix material is assumed to follow a

straight line parallel to the initial tangent. On reloading, this line is

retraced up to the virgin stress-strain diagram, which is then followed

at further increase of strain.

Let ui, uj be the displacements at the ends of segment Lm in the

direction ij. The strain in the matrix is

C = (u - I )/Lm (7)

Introducing the displacements uI and uj at particle centers i and J
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(nodes) in the direction ij, we have

u = uj -+"E (8)
I S J Si

substituting In Eq. 7, we get

i P Pc = (Uj - ui S §J (9)

Lm j I

in which P is the Interparticle force. The strain given by Eq. 9 and its

previous history makes it possible to calculate the stress in the strut

according to the stress-strain relation for loading and unloading in the

segment L .m

Having neglected shear and moment interactions among particles, the

particle system is equivalent to a pin-jointed truss and can be treated

as a special case of a finite element system. The static response of the

particle system to the prescribed loading is calculated in small

displacement increments, in each of which the behavior of the connecting

strut is described according to Eqs. 1-9. These equations are used to

formulate the stiffness matrix of each connecting strut in the global

coordinates, and these stiffnesses are assembled in each loading step

into the structural stiffness matrix.

As an alternative, one can use the secant stiffness Iteration (Owen

and Hinton, 1980), which is based on the total force-displacement

relations for the connecting struts. The solution algorithm proceeds In

this case in the same manner as described for layered beam finite

elements in Balant, Pan and Pijaudier-Cabot (1987).

The formulation just outlined represents a simplification of the

actual behavior on the microscale. The detailed growth of microcracks on

a scale smaller than the aggregate sizes ( i.e. the scale of grains in

the matrix) Is not modeled. Furthermore, the three-dimensional nonlinear
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constitutive properties of the particle and matrix material are not taken

into account. In this regard, however, we must realize that the physics

of macroscopic phenomena generally depends only on the principal

phenomena on the microscale. It is insensitive to various detailed

phenomena and processes on the microscale, which tend to average out or

cancel each other. Based on this experience, the description of the

microscopic phenomena should always be greatly simplified if the purpose

is a macroscopic model, but the simplification must be a realistic one.

It seems that the present model might be adequate in this spirit.

Random Generation of Particle Configuration

An important aspect of the simulation is the generation of the

random geometrical configurations of the particles which satisfies the

basic statistical characteristics of the real material, such as concrete.

The random configuration must be macroscopically homogeneous in space and

macroscopically Isotropic. The configuration must meet the required

granulometric distribution of the particles of various sizes, as

prescribed for the mix of concrete. The problem of random generation of

the configurations with such constraints has various difficult and

sophisticated aspects. These are for example discussed by Plesha and

Aifantis (1983), who also review various pertinent mathematical theories.

After experimenting with various alternatives, the following simple

procedure of random generation has been adopted:

1) The volume ratio for each particle size is specified in advance.

2) Using a random number generator from a standard computer library,

generate the pairs of coordinates (x,, y,}) i = 1,2,..., of the particle

centers (or coordinate triplets, in 3D), one pair after another, assuming

a uniform probability distribution for these points throughout the

specimen. This is particularly easy for specimens with rectangular
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boundaries, for which the probability distribution of each coordinate is

independent and uniform over a line segment, and equally easy for

specimens which can be subdivided in a finite number of identical

elements (e.g. squares or cubes).

3) For each generated coordinate pair (or triplet), check for

possible overlaps of the new particle with the previously placed

particles and with the specimen boundaries. Reject the coordinate pair if

an overlap occurs.

4) Random generation of the coordinate pairs proceeds until the last

particle of the largest size has been placed within the specimen. Then

the entire random placement process of the particles is repeated for the

particles of the next smaller size, and then again for the next smaller

size, until the last particle of the smallest size has been placed within

the specimen.

A different approach, which has been used, e.g., by Cundall (1978),

is to actually simulate the production of the material. In the case of

sand, this approach tries to simulate the pouring of the sand into a

form. The particles are taken one by one and dropped vertically at random

locations in the horizontal plane onto the heap of the sand already

deposited. After coming in contact, each particle is allowed to roll or

slide to a stable position. This approach produces a dense packing, which

is no doubt quite realistic for sand. However, the random particle

system obtained is not isotropic. Moreover, the programming is

considerably more sophisticated than that for the presently used

procedure. This simulation also ignores the fact that, in a material such

as concrete or a fiber-reinforced polymer, each particle is wrapped in a

layer of adhering matrix, which causes that perfect contacts are less

likely than particle locations with some separation.
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A salient feature of the present model is the existence of a contact

layer of matrix separating the adjacent random particles. This makes it

possible to model interaction between particle pairs that are not in

contact. This feature has been handled in the manner previously

introduced by Zubelewicz and Balant (1987), in which each circular

particle is assumed to be surrounded by a circular influence zone of a

larger radius Sr where r is the radius of the particle (Fig. la). After

some numerical experimentation, the value 3 = 1.65 has been adopted. The

particles are assumed to interact (i.e. the connecting strut to exist)

only when their influence zones overlap. When these zones do not overlap,

the particles are assumed to have no interaction (i.e., no connecting

strut exists). It should be noted that the use of the influence zone

greatly simplifies the random generation of the particle locations and

makes the aforementioned procedure possible.

There is one limitation which is caused by the hypothesis that the

particle interactions are only axial. The average Poisson's ratio v for

the initial elastic deformations cannot be specified as measured in

experiments but is implied by the specified characteristics of the random

particle system. For a random truss representing a system of particles of

one size, the value of v for a very large number of particles

asymptotically approaches 1/3 for the two-dimensional case, and 1/4 for

the three-dimensional case. This is a well-known property of large

macro-homogeneous lattices. When the particle sizes are unequal the value

of v can be different, but for the present two-dimensional calculations

it has been close to 1/3. This value of the Poisson's ratio is too high

for concrete. To obtain a realistic value (approximately 0.18), one could

include shear Interactions, as in Zubelewicz and Balant (1987) although

other measures might be possible.
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Numerical Studies

1) Response of Unnotched Specimens

The response of various unnotched concrete specimens has been

calculated and compared to what is known from testing and other

analytical studies. Examples of the randomly generated particle

configurations are seen in Figs. lb and 2. Fig. lb also shows the truss

to which the particle model is equivalent.

Geometrically similar specimens of various sizes, with depths = 3da ,

6da, and 12d a where d a= maximum particle size (12mm), have been analyzed.

The length of the specimens is always L = 8d/3. The diameters of the

particles are 12, 8, 5, 3 and 1 mm. The volume ratio of particles for each

diameter is selected to model concrete. Details of the number of

particles for each size are given in Table 1.

la) Size Effect. - A salient consequence of heterogeneity, which has

fracture mechanics as well as probabilistic aspects, is the size effect

on the failure load. If the failure is governed by criteria in terms of

stress or strain (yield criteria), then geometrically similar specimens

of different sizes must fail at the same value of the nominal stress at

failure , N defined as Pu/bd, where Pu = maximum load, d = depth of

specimen, and b - thickness. To test this property, the specimens shown

in Fig. 2 were subjected to prescribed uniform longitudinal displacement

u at one end (Fig. 3a) and restrained against displacements at the

opposite end. Displacement u has been incremented in small steps, and the

axial force resultant P calculated for the following material properties:

Gm = 24 N/m, fm = 3 MPa, E = 30 GPa, and E = 6E . The diagrams of loadf t m a m
P vs. load-point displacement u have been constructed; they are plotted

in Figs. 3b, c, d for the small, medium and large specimens. Fig. 3e

shows the load-deflection curves for specimens 1A, 2A and 3A scaled so
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that the peak point would coincide with (1,1). The figure reveals that

the post-peak declining slope gets steeper as the specimen size

increases.

The data points for maximum loads are plotted in Fig. 4 in terms of

stress ON as a function of the specimen depth d. The nominal stress is

normalized with respect to fu, an arbitrary measure of material strength,

m
taken here as fu = f t = 3 MPa. The depth is normalized with respect to

dat the diameter of the largest particle (12 mm). We see considerable

scatter; therefore, the values of the nominal stress are averaged for

each specimen size and are plotted as stars in Fig. 4. These plots

clearly reveal that there is a size effect.

The size effect for materials that exhibit progressive cracking Is

known to approximately follow the size effect law proposed by

Balant (1984):
Bfu
u TM (10)

where d = Aod a and B, 0 = empirical parameters. This law, which is

approximate but usually applicable to size ranges up to 1:20, represents

a gradual transition between the strength (or yield) criterion, for which

there is no size effect on nominal strength, and linear elastic fracture

mechanics, for which the size effect is the strongest possible

(oN o d- 1/2). For data fitting it is convenient to transform Eq. 10 to

the linear regression plot Y = AX+C, in which X = d/da , Y = (fu /a)2

2
C = i/B , and A = C/AO.

For comparison, the lines representing the size effect according to

the strength (or yield) criterion and according to the linear elastic

fracture mechanics are also shown In the Fig. 4b. From this it is evident

that the size effect obtained is intermediate between the strength
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criterion and the linear elastic fracture mechanics. This may be expected

on the basis of the fact that the specimens do not fail at cracking

Initiation but only after a crack band has already developed, in which

case nonlinear fracture mechanics should be applicable.

ib) Progressive Spread of Cracking. - Fig. 5 shows for the various

specimens their microcrack patterns at the last calculated point on the

load-deflection curve. Fig. 6c shows these patterns as they develop in

specimen 1A at various stages of loading corresponding to points 1, 2, 3

and 4 shown in Fig. 6a. The fully formed and open cracks (for which the

stress is reduced to 0, c > cf) are shown by the solid lines, and the

partially formed, developing (active) cracks which correspond to

strain-softening states are shown by the dashed lines. Also shown are the

previously formed cracks which are getting unloaded (Fig. 6b); these are

represented by two stars. We see that the cracks first start at many

random locations throughout the specimen, but later many of these

partially formed cracks unload, and only some of them, lying in a narrow

transverse band, open further and lead to the final fracture.

The unloading behavior is further documented in Fig. 7 which shows

the evolution of the strain determined from the line segments 1 and 2.

The first line segment always undergoes loading, crossing the developing

crack band, while the second line segment undergoes partial softening but

soon reverses to unloading (Fig. 7b).

ic) Scatter of Stress Profile and Symmetry Breakdown. - The

distribution of the longitudinal component of the interparticle forces P1

throughout the cross section at distance x = 60 mm from the fixed end Is

sketched, for specimen 1A, at various stages of loading In Fig. 8.

Similar plots for specimen 3A at two locations x = 160 mm and x = 240 mm,

are shown in Fig. 9. We see that the nonuniformity in the distribution is
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getting more pronounced at later stages of loading. Furthermore, we see

that the resultant of the longitudinal force tends to shift away from the

center line, which indicates a tendency for these specimens to follow an

asymmetric deformation pattern (a similar asymmetry is in fact indicated

by analysis of the stable paths of fracture propagation). The

eccentricity, e, of the force resultant, P, is plotted as a function of P

for two specimens (iA and iB) in Fig. 10, in which the tendency towards

an increasing eccentricity is clearly seen. Development of such

asymmetric response was observed in unnotched tensile specimens in the

experiments of Balant and Pijaudier-Cabot (1989). A similar asymmetry was

seen to develop in the experiments of Rots, Hordijk, and de Borst (1987).

id) Boundary Layer. - It is also apparent from Figs. 8 and 9 that

the largest longitudinal forces tend to be transmitted through the

interior of the specimen, and the boundary layer on the average transmits

lower forces than the interior. This is a manifestation of what is known

in concrete technology as the "wall effect". The boundary layer has on

the average a smaller content of the stiff particles and a higher content

of the soft matrix than does the interior of the specimen. This is

inevitable when the material is cast into a form. On the other hand, if

the specimen were cut out from a larger block of the material, then the

boundary layer would have on the average exactly the same composition

statistics as the interior. However, there would still be some wall

effect, although probably a much smaller one, due to the fact that

transverse stresses are transmitted across longitudinal straight lines in

the interior, while transmission of the transverse stresses is

interrupted at the surface.

le) Macroscopic Poisson's Ratio. - To determine the Young's elastic

modulus E and the Poisson's ratio of the equivalent (smeared,homogenized)

13



elastic continuum, the large specimen 3A was loaded in uniaxial tension

by prescribing a very small uniform longitudinal displacement (u=0.OO4mm)

at one end and restraining the specimen against displacement at the other

end. Free sliding was allowed at the ends in the transverse direction.

The displacements in the longitudinal direction, ux, and the transverse

direction, uy, are shown in Fig. 11 for the nodes with the maximum size

aggregates. Furthermore, in order to minimize the effect of boundary

conditions, only nodes within an interior region (0.8d x 0.8L) were

considered.

Fig. 11a shows for the case of mean uniaxial stress a = 0.39 MPa the

linear regression line for u as a function of the x-coordinate; its

slope represents the mean (macroscopic) strain in the x-direction,

cx= 0.1154x10- 4, from which E = 33.8 GPa. A similar regression line in

Fig. lb gives the strain in the y-direction, c = -0.4234xi0 "5. They

macroscopic Poisson's ratio is then obtained as v = -c /c = 0.37 . This
y x

value is close to the value of v = 1/3, which is the theoretical value

for a very large two-dimensional random lattice that is statistically

uniform and isotropic. Neither the calculated value P = 0.37 nor the

theoretical value v = 1/3 for very large specimens is realistic for most

particulate composites, Including concrete, for which, typically,

v = 0.18. The correct Poisson's ratio of real particulate composites

cannot be attained with the present model. The reason for this limitation

is that only axial interactions between the particle centers are taken

into account while shear stresses in the contact zones are neglected.

2) Response of Notched Specimens

As we have seen, cracking in unnotched specimens that are initially

stressed uniformly develops quite randomly. This prevents it to bring to

light fracture properties of the particle system. To see these
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properties, notched specimens have also been simulated with the particle

model. The notches were mathematically modeled by first generating the

random particle configuration as if no notch existed, and then severing

all the Interparticle connections that cross the line of the mathematical

notch depth, ao= d/6 ( a= a 0/d = 1/6 ).

Fracture properties may be best determined by studying the size

effect, since this effect represent the most important consequence of

fracture mechanics. To this end, we analyze geometrically similar

three-point-bend fracture specimens of three different sizes whose ratios

are 1:2:4 . Thus, three new specimens were generated as shown In Fig. 12.

To save computer time, the truss modeling of the random particle

system covered only the central region of the beam near the notch while

the end portions of the specimen were modeled by a regular truss with

linear elastic properties. This simplification has a negligible effect,

on the values of maximum loads, as long as all the cracking occurs only

outside the regular truss and far from its boundaries. Calculations

verified that this was indeed the case. For the three-point-bend

specimens the random particle region width was taken to be equal to

8d (96 mm) which coincided with the span of the smallest size specimen.a

Thus, no truss was added to a specimen of this size

In the calculations of maximum loads, three different sets of matrix

properties have been considered: (1) Gf = 24 N/m, ft M 3 MPa, (2) 24 N/m,

1.5 MPa and (3) 240 N/m, 3 MPa with E = 30 GPa and E = 6E for all
m a m

cases. For each set, the regression line (plotted in Fig. 13a) yields the

values of slope A and intercept C, from which the values of B and A0

follow, see Fig. 13b. The size effect curve according to Eq. 10 Is also

plotted, along with all the calculated points for the different sets of

matrix properties. The results show a good agreement with Eq. 10.
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However, for the aforementioned values of material properties, the

results are closer to linear elastic fracture mechanics than the test

results obtained for similar specimens by Balant and Pfeiffer (1987).

From the size effect on maximum loads, one can determine the

fracture energy Gf of the idealized material represented by the random

particle system, using the formula (Balant and Pfeiffer, 1987)

g(Go) f2 d (ii)

f AE u a

Here E = Young's modulus (macroscopic), and g(o0 ) is the nondimensional

energy release rate according to linear elastic fracture mechanics;

g(0})= 6.07 for the present specimens. On the basis of Eq. 10, one can

also determine the size of the fracture process zone according to the

formula (Balant and Kazemi, 1988):

cf = ,(A (12)

where g'(a O0 is the derivative of g(a) which is evaluated at a0= 1/6, and

is equal to 35.2 for the present three-point-bend specimens.

Table 2 gives the values of Gf and cf calculated for the three sets

of matrix properties. Taking property set (1) as reference, the results

from (2) show that a decrease of interparticle strength fm will decrease
t

G and increase cf. However, results from (3) show that an increase of Gfmf f
will increase both Gf and cf. Table 2 also includes the values obtained

by Balant and Kazemi (1988) from experiments on mortar and concrete.

These values are in the same range as calculated here and could be

matched closer by adjusting the material properties of the model.

Numerical experience showed that the calculated maximum loads can be

sensitive to the random arrangement near the notch tip and the way the

notch is modeled. The length- of the notch cut by a saw, which is

simulated by severing the particle connection intersecting the notch, is
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uncertain to the extent that the notch tip can be any where between the

last severed connection and the first unsevered connection ahead of the

tip. Furthermore, one should not delete a particle whose center falls

into the width of the notch cut, since this can greatly distort the

results. This means that the notch cut should be considered as a line

rather than an actual cut of finite width.

Conclusions

i. Random generation of a particle system with a given particle size

distribution can be accomplished quite easily, due to the fact that the

particles are circular (or spherical) and are not in contact but are

separated by contact layers whose thickness is unspecified except for a

given maximum thickness value.

2. Modeling only the axial interactions of neighboring particles seems

sufficient to obtain a realistic picture of the spread of cracking and

fracture in concrete. The neglect of shear interactions might cause the

fracture process zone to be shorter than the value reported from test on

concrete specimens. However, the length of this zone can be increased by

Increasing the value of the Interparticle fracture energy (Gm) or
f

by decreasing the value of the Interparticle strength (ft).

3. The model can describe realistically the post-peak declining

load-deflection diagram, which is predicted to get steeper as the

specimen size increases.

4. In contrast to local continuum models, the present model is capable

of describing the size effect on the nominal strength of unnotched

specimens as well as notched specimens.

5. For direct tensile specimens, the model predicts development of

asymmetric response after the peak load, such that the specimen bends and

the axial force resultant becomes eccentric. This agrees with laboratory
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tests.

6. Some Improvements of the model might be appropriate in

(1) determining the cross section areas of the truss members so as to

make them dependent on the distance between particles, (2) controlling

the poisson's ratio without having to introduce shear interaction, (3)

developing a method to connect the particle system in the cracking zone

to a finite element mesh around this zone. This would significantly

reduce the number of particles needed to analyze three-dimensional or

large two-dimensional problems.
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Captions

Fig. 1 (a) Two adjacent circular particles with radii r and r and the

corresponding truss member ij; (b) A typical randomly generated
specimen and its corresponding mesh of truss elements; (c)
Constitutive law for the matrix.

Fig. 2 Geometrically similar specimens of various sizes with randomly
generated particles.

Fig. 3 (a) Direct tension specimens with d - 36,72 and 144 mm;
(b),(c) and (d) load-displacement curves for specimens of
different sizes; (e) normalized load-displacement curves for
specimens IA, 2A and 3A.

Fig. 4 Linear regression plot (a) and size effect plot (b) constructed
from the maximum load values calculated for direct tension
specimens of various sizes.

Fig. 5 Cracking patterns at the last calculated point on the
load-deflection curve for unnotched specimens in tension.

Fig. 6 (a) Load-displacement curve for specimen 1A; (b) Constitutive
law for the matrix; (c) Evolution of cracking with load
level.

Fig. 7 Load-strain curves for specimen 1A for (a) Full range of
strain; (b) Small values of strain.

Fig. 8 Distribution of the longitudinal component of the interparticle
forces P throughout the cross section of specimen 1A.

Fig. 9 Distribution of the longitudinal component of the interparticle
forces P throughout the cross section of specimen 3A.

Fig. 10 The evolution of eccentricity as a function of load resultant.

Fig. 11 Linear regression for components of displacements of nodes with
maximum size aggregates in (a) X - direction ;(b) Y - direction

Fig. 12 Inr~e-point-bend specimens with d = 36,72 and 144 mm

Fig. 13 Linear regression plot (a) and size effect plot (b) constructed
from the maximum load values calculated for three-point-bend

specimens of various sizes.
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Table 1. Number of Particles in Specimens

Specimen d (mmi) L Cmmi) Diameter Cmm)
_______ _____ _____ 12 8 5 3 1

1A,B,C.D 36 96 2 16 14 68 35

2A,B 1 72 1 192 9 66 58 273 140

3A 144 384 39 264 235 1095 563

22



Table 2. Values of Fracture Energy G fand Process Zone Size c f

Three Particle Model Experimient*
Point
Sending (i) (2) (3) Mortar Concrete

Gf(N/rn) 16.5 6.8 31.2 20 37

C f (mma) 3.5 4.2 5.9 1.9 13.5

from Balant and Kazemi (1988)
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Abst~ct. Strain-softening dxmage due to distributed cracking is modeled
by an elastic conci.wm wich a quasipariodic array of cracks of ragular
spacing but varying sizes. As a model for the inicial stage, the cracks
are penny-shaved and small compared to their spacing, and as a model for
the terminal. s;agethe uncracked ligaments between the cracks are circular
and small compared to their spacing, The strain due to cracks and the
compliance per crack are calculated. The cracked maerial'is homogenized
,.n such a manner char the macroscopic continuum strains satisfy exactly
the condition of compatibilit7 with the actual scrains due to cracks, and
the macroscopic continuum stress satisfies exactly the condition of vrrc
equivalence with the actual stresses in the cracked materia. .The results
show that, contrary to the existing theories, the damage variable used in
continuum damage mechanics should be nonlocal, while rhe elastic part oi
the response should be local. In particular, the nonlocal continuum damage
should be considered as a function of the spacial average of the cracking
scrain rather than its local value. The size of rhe averaging region is
determined by the crack spacing.

TUI 3sn to

:ntroduccion of nonlocal concinuum concepts into the analysis of strain-
softening scructures (11 has recently met wuith considerable success. :
has eliminated problems with spurious mesh 3ensicivity and .~orc
convergence and has assured chat refinements of the fi-ni:a element mash
cannoc lead to spurious lAocalizaciol of energy? dissipation into a

softining zone of a vanishing volume -tt However, a physical
justification of the norlocal approach is still lacking. .The objectiye of
:.he present brief study Is to show such a justification :or a certain case
of st-ran-softan.ng that is caused by discributed cracking.
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Array of Small Penrw-Shated Cracks

We consider an infinice elastic continuum concaining an array of

small circular (penny-shaped) cracks normal to axis x of cartesian

coordinates x, y, z (Fig. la). The cracks lie in parallel planes x - xL -

il (i - ...-2, 1, 0, L, 2,...) and their centers lie at the nodes of a

spacial cubic lactice whose nodal spacing for each of the Latcice

directions x. y and z is 2. To bring to light the nonlocal aspects, the

crack array cannot be perfectly periodic. We make the array quasiperiodic

by assuming that the radius a1 of the cracks on the planes x - XL slifht=17

xl~l --- - - -

P~i.

(al Ii

£ Za~

(b)-

Xiii1

LI 2c1

Lg. i quasiperiodic Crack Array In Znfini:a - las ic Concinuum: 'a)

Small Penny-Shaped Cracks, (b) Small Circular ±Igamencs.
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varies from plane to plane. All the cracks are assumed to be smal.

compared to 2, i.e. ai << 2 for all i.

At x --- we assume a fixed boundary, and at x -x a stress-free

boundary. Small uniform normal distributed loads p, are applied on the

planes x - x i L 2/2. As the boundary conditions at y - ± -. z - t a, we

assume that the boundary points are sliding on the planes parallel to x.

These boundaries develop additional lateral normal stresses a' and a'z

which produce on the cracks stress intensity factors of zero values, and

therefore they have no effect on the cracks. Consequently, these

additional lateral stresses a" and a" , which are superimposed on the7 Z

stress field due loads Pi, are uniform in each layer - 2/2 < x < xL +

2/2.

Due to the loads in the x-direction, there are additional nonuniform

stresses (of all components) near each crack. If ai/ 2 is sufficiently

small, the normal stress ax on each side of the plane xi + 2/2 is nearly

uniform. Because of periodicity, each cell cross-hatched in Fig. la

behaves as if its lateral boundaries were sliding. The average normal

stress rx " 0 1on any plane x - const. is exactly the same for all x

within the layer x1 - 2/2 < x < xi + 2/2. Across the interfaces x - x i +

2/2 of these layers, ax varies discontinuously if pi is nonzero. Note that

the present boundary conditions and loading are introduced in such a

manner that in absence of the cracks each layer is in a state of uniaxial

strain, whose value varies from one layer to the next.

If the cracks are sufficiently small compared to 2 (i.e., a i<2),

they do not interact and the formation of one crack does not release any

appreciable amount of strain energy from the outside of the layer in which

this crack is located. Therefore, the stress intensity factor K. is the

same as for a single crack in an infinite elastic solid subjected to

remote stress a i, which is (11, 121:

Ki - 2ai (ai/I)1/2  (1)

Accordingly, the energy release raze per crack circumference 2T a. is '13,

14]:
K2

I2maJI.L a a (2)

where E - E / (I - V2), E - Young's modulus, and v - Poisson's ratio. 3y

integration, the total energy release per crack is:
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8 a..~ 3 a2 (3)
i -3E' aI o

By Castigliano's theorem, the displacement v. due to the cracks lying

in the plane x - x is v. - awi/ 8P. where Pi - force resultant per crack.

Since P i - I2a, we have

aw 16a.

Li 2 dai  3E' 2  1

This represents the difference of displacements between the planes x -

x - 1/2 and x - i + 1/2. The average normal strain due to cracks in the

interval (x 1/2, X i + 2/2) may be defined as:
v. r 16 a. 3

ii I 3E' 2 1 
(We may call it the cracking strain. Furthermore, assuming the cracks to be

propagating, we must have Ki - Kc - critical stress intensity factor of

the material. Thus, from Eq. 1,

K2

a " 2 (6)

Substituting this into Eq. 5, we obtain:( ,~3K6 1/5 7- - . (7)II2E' 3 f C( ii' 1 )

in which function represents the overall secant compliance due to cracks

and is defined as:

16__ [12 E-' 2 /
") - *2) 3E' T3 K 6  (3)

Eq. 7 yields a decreasing stress a. at increasing strain y., i.e. strain
L

softening.

Note that compliance C depends on length 2, which may be regarded as

the characteristic length of the cracked material. Dependence of the

compliance or stiffness on some characteristic length is a typical

property of nonlocal materials.

Homoigenization b Macroscopic Contimn Aunroximation

The conditions of macroscopic equivalence of the actual cracked

material and the homogenizing continuum have to be stated integrally for

the basic, periodically repeated celL, in this case the layer (x, i/2,
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x. + 2/2). The basic conditions we must impose are the compatibility of

deformations over this cell and the equivalence of work. For our

example, we can satisfy them exactly.

Compatibility of the macroscopic cracking strains 7(x) with the

displacement vi due to cracks requires that
x+ L/2

v f 7(x) dx (9)i  - 2/2g
xi-/

which implies that
xL +2/2

7i " 7(x) dx - <7(xL)> (10)
X L2/2 " )

The pointed brackets < > denote the averaging operator, and the

superimposed bar is a label for the averaged (nonlocal) quantities.

Equivalence of work done by the stresses in the laver (x- 2/2, x +

1/2) requires that x 1+1/2

u1Lv6 L a(x) 67(x) dx (11)
x -2/2

where a(x) is the macroscopic continuum stress; and 6v and 67(x) are any
variations of the displacement due to cracks and the macroscopic cracking

strains which are kinemacically compatible, i.e. satisfy Eq. 9.

Substituting for v. from this equation, we obtain from Eq. 11:
x i +2 2 X..1/2

aj { 6-f(%) dx - f acK) 57(X) dx (12)
xi+1/2 fx+ 2/2

Since ai is constant within the layer, Eq. 12 may be rewritten as
x1+1/2

( - a(x)] 67(x) dx - 0 (13)

Ix L-/2
and because this muse hold generally for all possible variations 67(x), we

have

a(x) - a for xL - J/2 < x < xL + 1/2 (14)

Note that this equation for stresses involves no averaging integral while

Eq. 10 for strains does. For the type of loading we assumed (i.e.

distributed loads p1 on planes x - x, + 2/2), a(x) is according to Eq. 14

a piecewise constant function. If the loads were not concentrated in these

planes but distributed also over x, a(x) as well as a (Y) would

vary continuously and a(x) would not exactly equal aIx) (representing :he
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average of stresses a over any plane x - const.). The reason we assumed

the applied loads to be concentrated into discrete planes was to construct

an example for which the continuum homogenization conditions can be

satisfied exactly.

The presence of the spatial averaging integral in Eq. 10 is what

ultimately impresses on the macroscopic continuum a nonlocal character, as

we will see. At the same time, the absence of the averaging integral from

Eq. 14 causes the nonlocal character :o be restricted only co the cracking

strains. In this regard it may be noted that in the theory of

heterogeneous materials r151 the work equivalence condition is usually

stipulated in a slightly different form, namely 2aGi -e a(x)e dx over

an interval of length 1, e being an arbitrary uniform strain (virtual

strain). This condition would imply that a, - f u(x)dx/l. However, it
would not guarantee work equivalence for the actual displacements v i and

the actual cracking strains 7(x). Thus Eq. 14 appears better Justified for

the present case.

According to Eqs. 10 and 14, the relation i- C(Ti. I)ai (Eq. 7) has

the following generalization:

<7(X)> - C(<7(X)>, 1} a(x) (15)

Ve see that the continuum cracking strain in this stress-strain relation

is nonlocal, 4.e. , is processed through a spatial averaging operator.

However, this is not true of stress a(x).

The total displacement u in an elastic body with cracks represents a

sum of the displacement obtained for the same body under the same loads if

there are no cracks, and the additional displacement v due to the creation

of the cracks while the loads are kept constant. Thus, the total relative

displacement u i of the macroscopic continuum between the planes x -

xi ' 2/2 and x - xi + 2/2 is

u- 2e(x i) + v. (16)

where e is the elastic normal strain in the x-direction which is produced

by stresses a(x) in the same elastic continuum if there are no cracks; and

7(x) represents the increase of this elastic strain due to introduction of

cracks of radii a; . Strains e(x) are obtained by stress analysis of the

continuum with no cracks, which is local.
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Substituting vj -y i and defining the macroscopic strain at x - x i

as e(xi) - u/12 , we get from Eq. 16 e(xi) - e(xi) + '., and generalizing

this to any x, we obtain:

I(x) - e(x) + <7(X)> (17)

So the total stress-strain relation for the normal x-components of stress

and strain in the macroscopic continuum must have the form

C(x) - e(x) + C[ <7(x)>, ] (x)(18)

The elastic strain is determined as the strain in the continuum with

no cracks. For the type of boundary conditions and loading that we

introduced, the continuum with no cracks is in a state of uniaxial strain,

i.e. all the strain components except cx are zero. Thus

e(x) - C0 a(x) (19)

where C0 is the elastic compliance in uniaxial strain,

CO- ( + VM- 2v (20)0 (1 -V)
To sum up, the stress-strain relation for the macroscopic continuum

should not be fully nonlocal. The elastic strains should be local, while

the (macroscopically smoothed) strains due to cracking should be nonlocal.

This property of the nonlocal formulation, introduced on the basis of

numerical experience and intuition in Refs. 3-8, has been found to be

essential for achieving well behaving finite element solutions.

It is possible to take an alternative approach to homogenization in

which the relative total displacement u. - IC oa +f 7(x)dx between x - X.

2/2 is obtained before homogenization. Instead of Eq. 9 we may now

impose the compatibility condition in the form ui - fe(x)dx over the

layer. Writing the work equivalence in the form a iSui - I a(x)6C(x) dx

instead of Eq. 11, we again recover Eq. 14 by the same procedure, however

from the foregoing expressions for u, we obtain <e(x)> - e(x) + C[ <7(x)>,

2]u(x). The fact that <7(x)> is nonlocal and e(x), a(x) are local agrees

with Eq. 18 but the appearance of nonlocal <e(x)> disagrees. It would make

the use of this stress-strain relation more complicated, probably

unnecessarily so. It should nevertheless be kept in mind that this aspect

of homogenization is not without ambiguity.

The idea of nonlocal continuum was originally introduced without any

reference to strain softening 16-221 and all strains and s=resses were

considered as nonlocal, i.e. the continuum was full'y nonlocal. .hen this
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idea was first proposed (2] to deal with strain-softening damage such as

cracking, the stress-strain relation was also assumed to be fully

nonlocal:

<,(X)> - <e(x)> + CC <C(x)> - <e(x)>, 2] <a(x)> (21)

This stress-strain relation, whose finite element implementation leads to

the so-called imbricate medium and an imbricated finite element system

[2], was found to cause various problems in finite element programming,

due to difficulties in the implementation of the boundary conditions and

interface conditions as well as the existence of certain spurious zero-

energy instability modes. Thus, even though these difficulties have been

overcome by certain artificial devices (23], this original version of the

nonlocal formulation for strain-softening is complicated and less than

satisfactory from the theoretical viewpoint. From the comparison of Eqs.

18 and 21 we now understand why.

To recapitulate, the elastic strain e is the strain of the continuum

with no cracks, and so it must be local. On the other hand the macroscopic

cracking strain must be defined by averaging (smoothing) of the effect of

the discrete cracks in order to satisfy the strain compatibility

requirement, and so it must be nonlocal. The basic reason is that the

displacement due to a crack (Eq. 4) is defined with a unique value only at

a sufficient distance from the crack.

Nonlocal Contit-m Damage Mechanics

In continuum damage mechanics (24-27, 1], the stress-strain relation

is written in the form:

.(x) - O(x) (22)
- 0(x)

where 0(x) is called damage and C t the elastic compliance for the

continuum with no damage (C - 0), i.e. no cracks. Comparison of Eqs. 18 and

22 and substitution e(x) - 0o(x) yields for the damage the expression:

0W) - 1 - 0 - f( <7(x)> ) (23)C[ <7(X)> .21 + CO0

i.e. the damage is a function, f, of the average cracking strain rather

than the local cracking strain.
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From Eq. 23, it is clear that continuum damage a" should be considered

to be a nonlocal variable. Moreover, Eq. 23 shows that a should be a
function of the average of the macroscopic cracking strain j(x). Such a

definition was introduced for reasons of proper convergence at mesh

refinements in Refs. 3, 4 and 6. Ref. 3 also considered an alcernative in

which Q is obtained as the average of the local damage energy release race

Y (or local damage w) that depends on local 7. This is equivalent only

approximately, not exactly. The same is true when n is considered to be a

function of <e(x)> rather than <7(x)>, as done in Ref. 8 for other

reasons.

The definition of damage in Eq.23, along with the stress-strain

relation in Eq. 18 in which e, a nd a are local, was found to yield
excellent results in various finite element applications. The solutions

were found to converge properly on mesh refinement (3, 4-6] and the

numerical implementation proved to be quite easy even in large finite

element programs (5, 7, 8]. Moreover, the nonlocal version of such

programs provided farcer convergence than the local version. As one

application, the problem of cave-in Induced by compressive strain

softening at the sides of a subway tunnel excavated in a cement-grouced

soil was solved using meshes with up to 3248 degrees of freedom (7].

If 7(x) varies so slowly that the change of 7 over distance 2 would

be negligible, then of course <7(%)> can be replaced by 7(%), and the

damage is then local. However, since strain softening causes strain

localization, such a slow variation of 7(x) cannot be assumed to occur for

all x. This is why a local treatment of strain-softening damage is always

inadequate.

Other Crack Systems and Generalizations

Many other types of crack systems can be analysed similarly. As one

further example consider the terminal stage of damage in which the planes
x xi are fully cracked except for small circular ligaments of diamecers
2 ci (Fig. Ib). The centers of these ligaments coincide again with the

nodes of a cubic lactice of step 2, and the ligaments are assumed to be

very small compared to 1, i.e. a c<< 2 for all i. This problem was

analysed for a different purpose in Ref. 28.1t was shown that ,for K. -

roll ml l l~ ~l l 1 l 1 1 l l
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K ) the curve v (a) attains a maximum of v .after which it exhibits a
c LI

snapback, whose final stage is described by the equation

El 3 3  
(24)

i "4w K2 12

Again vi is the relative displacement between the planes x - x- 1/2 and

x - x + 1/2.

The average normal strain due to cracks in the interval (xj- 2/2, x +

2/2) may again be defined as 7i vi/I. Eq. 24 may then be written as

,. (25)
- C 1)

in which
C (ii,) - 2 (6

4r K2 .i 
(26)

C
To satisfy the requirement of compatibility of displacement v. with the

2
macroscopic cracking strain 7(x), the value of 7 'may be replaced by

<7(x)>, and further analysis is the same as before (Eqs. 9-20), with the

same conclusions.

The detailed form of the compliance function C(i, 2), as defined by

Eq. 8 or 26 is for our conclusions about the nonlocal aspects obviously

unimportant. What is important is that C depends on the characteristic

length 1, and even more that it depends on the average cracking strain -i

which is macroscopically equivalent to <7(x)> rather than 7(x). Various

other types of crack arrays should therefore lead to similar conclusions.

The preceding analysis neglected the microscopic heterogeneity of the

material, such as the differences in elastic moduli between the aggregate

and the matrix found in concrete. This heterogeneity no doubt has a large

influence but it alone might not necessitate a nonlocal treatment.

According to numerical experience, the nonlocal approach is required only

if strain softening takes place, and strain softening is the consequence

of microcracking, void growth or other damage.

The crack spacing in real materials is randomly irregular. To model

this, one might consider a certain statistical distribution of lengths 1.

Accordingly, one could introduce a certain weighting f-dnction in the

averaging integral (operator < >) in Eq. 18. This has already been done in

Refs. 3-3 for reason of numerical efficiency. The analysis should also be
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generalized to three dimensions, although this would bring about much
greater complexity.

The number of cracks increases during the progress of damage, and

this reduces their average spacing. This might require the characteristic

length to be considered as a variable. The question would then arise as

to what is the proper domain over which the averages should be taken.

Also, it needs to be recognized that there are other sources of softening

damage than cracking, e.g., void nucleation and growth in metals, or

interface slips with softening. Further extensions would be needed for

such problems.

Concusio

1. Based on the analysis of an array of small penny-shaped cracks it

appears that the damage variable in continuum damage mechanics should be

treated as nonlocal while the elastic part of the response should be

local.

2. The nonlocal damage should be formulated as a function of the

spatial average of the cracking strain over a zone whose size,

representing the characteristic length of the macroscopic continuum,

coincides with the crack spacing.
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ABSTRACT
The microcracking in the fracture process zone ahead of a major crack
is assumed to consist, in the initial stage, of a two-dimensional ar-
ray of small circular(penny-shaped)cracks and, in the terminal stage,
of a two-dimensional array of small circular ligaments, all located on
the main crack plane. Both caies are solved in three-dimensions accord-
ing to linear elastic fracture mechanics. The solution is approximate
but asymptotically exact both for very small circular cracks and very
small circular ligaments. The spacing of the cracks as well as the
ligaments is governed by the spacing of the large aggregate pieces. The
curve of the transverse displacement v due Lo cracks versus the re-
mote applied normal stress is calculated and is found to exhibit snap-
back instability at which a negative slope changes to a positive slope
and v reaches its maximum possible value. Since several other influen-
cing physical mechanisms were neglected in the analysis, it still re-
mains to be verified whether the snapback instability does actually
occur in the concrete fracture process. The asymptotic behavior at
ligament tearing is further analyzed, based on St.-Venant's principle,
for arbitrary general three- and two-dimensional situations and it is
shown that when the ligament transmits a force (mode 1, 11 or I1),
its final tearing is always characterized by snapback instability,
which determines maximum possible displacement due to crack. When,
however, the ligaments transmit only a moment (bending or torsional),
there is no snapback instability.

Nature of Problem
Th" softening law for the fracture process zone of a heterogeneous mate-

rial such as concrete may be characterized either by the function a - a(5f) or
the function a - a(y) where a is the normal stress across the plane of the
crack ahead of the crack tip, df is the total displacement across the fracture
process zone of width wc, and Y - 6f/vc - mean normal strain across the frac-
ture process zone (Fig. "). The shapr of the curve a(6f) or o(y) is the cen-
tral question in the modeling of fracture in concrete as well as other materi-
als such as rock, ceramics, composites, ice, etc. (1).

951
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FIG. 1
Three-dimensional Idealization of the Microcracking Process

Ahead of the Main Crack

The main microstructural influences on function a(f) or a(y) include:

1) the nucleation, growth and coalescence of microcracks within the fracture
process zone; 2) the heterogeneous microstructure, in which the difference of
elastic moduli between the aggregate and the mortar matrix is the dominant fea-
ture; 3) the strength of the interfaces between the aggregate and the matrix,
which is normally weaker than the strength (or fracture toughness) of either
the aggregate or the matrix; and 4) various inelastic phenomena occurring away
from microcrack tips, such as frictional slip, resistance to crack closure, etc.
It is difficult to study all these effects simultaneously. This study*will
focus on effect 1 and take into account effect 2 only insofar as the spacing of
microcracks is concerned. The main objective is to study the a(Sf)-curve from
the stability viewpoint, especially in terminal asymptotic stage of ligament
tearing, on which little information exists at present.

Idealization of Crack System Initiation, Growth and Coalescence

To facilitate analysis, we imagine the array of aggregate pieces to be

based on Report (23)
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regular, organized as a cubic lattice (Fig. L). This idealization was used be-
fore to derive from the initiation condition of interaggregate cracks a formula
for the decrease of concrete strength as a function of the maximum aggregate
size (1,2), which was found to agree with test results. Now we use the sane
idealization to study crack initiation as well as te-i:al coalescence.

f the aggregate is stiffer than the _a=ix (as is true of nor--al con-
crees), or if at least the aggregate-matrix intarface is weaker, the micro-
cracks are likely to initiate in the thi.n contact zones between aggregate
pieces (Fig. Ia). ha initiating microcracks which form im the fracture proc-
ess zone ahead of the =ain crack (Fig. I) may be imagied to be circular (penny-
shaped), of diameter 2a. Their spacing in the plane (x:) of :he main crack is
the same as the spacing s of the large aggregate pieces, which may be given as
s - ned a where da - maximum aggregate size and a. - empirical factor greater
than 1 but close to 1, perhaps ns M 1.1.

The largest microcracks form on the main crack plane, and smaller micro-
cracks form away from the crack plane. The reality is somewhere between the
following two ideal limiting cases: 1) The microcracks arise only on the crack
plane, thus forming a two-dimensional periodic array in the plane (xz); and
2) the microcracks form a three-dimensionally periodic array in space (xyzz),
being the same on the crack plane as well as the adjacent parallel planes.

Case 1 conforms to the classical Dugdale's and Barrenblatt's cohesive
zone concept, in which all fracturing is imagined to be lumped into the crack
plane. Case 2 corresponds to the more recent scrain-softening models for
cracking (1), which are now known to describe fracture realistically and in a
theoretically consistent framework provided that the softening is treated in a
nonlocal manner (3, 4). We analyze here only Case I.

At the beginning, the cracks may be assumed to be circular (penny-shaped),
of radius a << s (Fig. la,b). Later the cracks develop complex irregular
shapes in the crack plane as they gradually coalesce with each other. In the
terminal stage of tearing, however, the uncracked area may be assumed to have
again a simple shape, consisting of a periodic array of c~.rcular ligaments, of
radius 2c, such that c << s (Fig. i d,e).

For a << s, the situation may be idealized as a single penny-shaped crack

within an infinite cylinder (Fig. 1c) of radius R. Force (and work) equiva-
lence requires that the cylinder cross-section area of the cylinder be the same
as one square of the lattice, i.e. rR2 - s2 , from which R - s/T. For c << 3,
the situation may be idealized as a single penny-shaped ligament of radius c
within an infinite cylinder of radius R - s/VT (Fig. ld,e,f). Iile the linear

elastic fracture mechanics does not apply to the macroscopic fracture, we may

assume it to apply for the growths of the microcracks. The linear elastic
solution for the penny-shaped crack (for any a(s)) was given by Buecknar (5)
and Benthem (6); see Tada's handbook (7, p. 27.1). The solution for the penny-

shaped ligament was given perhaps most accurately by Nisitani and Noda (8) (see
Murakami's handbook (9, p. 643)), and previously by Bueckner (5), Benthem and
Koiter (6), Harris (10), and others (cf. 7,9).

Circular (Penny-Shaved) Cracks: Initial Stale

For the penny-shaped crack, Benthm and Koiter (6) (see also p. 27.4 of
Ref. 7 or p. 653 of Ref. 9) found that

KI a"MfL(a)O a - aIR (1)

where

f I . -- 1 (a- ( ( -(+ 0. 4, Z33) (2)
f a-) Y .'
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K1  Mode I stress intensity fator; / - ?/s - average axial stress;

P - resultant axial force on the cylinder (Fig. Ib). !he error is under I%.
The necessary condition of propagation of the cracks is K! - Kc- - critical
stress intensity factor of the microcracks (=aterial constant). So the remote
stress required for crack propagation is:

fc=) (3)

To calculate the displacement v due to the cracks, we need to determine first
the strain energy W, per crack that has been released due to the for-mationr. of
the crac.k.s. The energy release rate G is known to be (11, p. 108) G -KT'
where ' - j/-'j), - .oisson rati , - Young's elastic iodulus. By defi-
nition aW,/aa - 2raG, and so

- ZraG - 2.a r- 2-aR !,"a) (4)

aaa

Integrating, with the substitutions a - Ra and da - Rda, we get

W 2-rR 3 TG(a), (5)

where.

G, -(c c'f)(')ds' (6)

The displacement at y due to the formation of the crack must, therefore, be
w l I w l . P Z G ( ) ( 7 )

Eqs. 3 and 7 represent a parametric description of the stress-displacement
curve. Choosing various values of a, and evaluating a and v, one obtains the
plot in Fig. 2 in which S - nondimensional remote applied stress and q - non-
dimensional displacement due to the craek;

S /_, _L . El-/ 47) . (8)
S m q il

Small Circular Cracks: Asvmtocic Aooroximation

An explicit, asymptotically exact solution can be obtained for the special
case of small a (a << I or a << R). Then fl(a) - 2(/r) , and so

KI l 2V'a 7T. (9)
Then 3W1 aa - 2,raKE - 8a2aZ/E'. By integration, W1 - 8Za3/3E'. Note that

in contrast to Eqs. 1, 4 and 6, these expressions are independent of R. By
differentiation,

v w, 1 aWl 16 a a3  16 a a3

a ' -a--a 3-T E' R- - T ' .

where we used the relation s' - 7RZ, which guarantees the force equivalence with
a square grid of small circular cracks to be satisfied exactly. We see that the
displacement v due to the cracks depends or. R, and thus on spacing s. Setting
K, - Kcm, Eq. 9 yields a - 7rZKm/4a 2 , and Eq. 10 becomes

v I'' 1Bs (a :5 f'

Since the material can resist only finite scress, this equation is meaning-
ful only for a < f" where f' - tensile strength. As argued already by Grif!fith,
the creator of fracture mec.anics, i: follows from Eq. 9 that the 'aterial must
initially contain flaws equivalent to circular cracks of radius a - a-,
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FIG. 2
Nondi=ensional Remote Stress vs. q = A' 'v/A E
Nondimensional Remote Displace-
ment Due to Cracks for the 2.0 t t
Initial State Idealization as a
Circular (Penny-Shaped) Crack
in a C71inder (dashed segment, 030a/. > 0.70 is irrelevant since "
it is not initial stage). "
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Although the present solution is valid only if all the initial flaws are lo-
cated on one plane, the flaws are in reality distributed through the material
uniformly. The initial displacement due t.o cracks when the cracks first become
critical (a - f,) then is, according to Eq. 11,

7T3K 6

voM- cm
12 E's-f "3

During the initial loading from a - 0 to a - f', the cracks do not grow (KI <
Kcm), and so the a-v relation is a straight lie, a - C0 v, where C0 M f-/vo -

stiffness per unit area due to preexisting flaws;

COa  . 2 .,sZ. (14)

Assuming that the effective width wc of the fracture process zone is such that
the displacement at its boundary is nearly the same as v at y - -, the total
initial displacements if across the fracture process zone before the cracks be-
come critical is

6 f (7- -+ 7-)a (for v 5v.) (5
C3

where E' - E/(1 -v ). E ust obviously be interpreted as the theoretical elas-
tic modulus of the material without any preexisting flaws. The elastic modulus
measured in a tensile test is Eaff - [E' - 1 + (Cawc)-L]-l. After the cracks be-
come critical

v~a "T 3K4
+ = + M (for vav 0, a << s). (16)

In analogy to Eq. 15, deformation wa/E' needs to be also added to the
plot v(a) in Fig. 2 in order to get the plot of df versus a valid for any a.
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Cir-ular Lizaencs: Ter=i.-. Staze of Crack CcaZescence

Now consider the case of a pen-y-shaoed ligament in an infin±:e circular
cyli:nder of radius R. T.e result of elastic analysis (8,S) is:

1 - cavi-f z(VO) - C/R) (17)
where

)  w8]1(+ - 0.363 3 + 0.731 ' ) (1 +0.l r 2V7)z T - a(18)
c - radius of ligamen: (F-ig. le), a - P/-R Z , and P axial for-e. The remote
applied stress required for crack propagat±on is:

1 c=
z(m (19)

The energy release rate is
aw K..1 zr

- -, 2rc -CR 0 '2(20)

By integration, with substitutions c - R1 and dc Rd4,

fW ' 1 d - -17 3"dc =ZR
, ac

where

G (4) " f -f.(,2 )d' (22)

The displacement v at y -, caused by the crack, may now be calculated as

aw, aw
= - 4R W (3)

Eqs. 19 and 23 represent a parametric'descripcion of the stress-displacement
curve. Choosing various values of & and evaluating a and v, one obtains the
plot in Fig. 2 in terms of nondimensional stress S and displacement q defined
by Eq. 8.

a/Rt a 0. 03

S =FIG. 3

q =V/ TKNondimensional Remote Stress
vs. Nondimensional Remote Dis-
placement Due to Crack for the

It v0.06 Terminal State Idealization as
a Circular Ligament in a Cyl-
inder (dashed segment, a/R <

C0.4, is irrelevant since it is
not terminal stage).

',. .S 0.3 r 2

1.0 a"

/ ..... % .0(.I.*U

0.0 0.5 1.0 1.5
q
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Small Circular Lizamencs: Asymptot±c ADoroxination

An e-xlicit asymptotically exact solution an be obraiead for the special
case of small Q (< 1 or c << R). Then K - Z a(Rg-3 )i, i.e.

P ()

Then -W,/ac 2=c.K3-E' - PZlZ'cZ. Note that, in contrast to Eas. 17 and IC,
these equations are independent of R, but only if they are writ:en in te--s of
the applied force P rather than the applied stress a (for ver- s=al! cracks,
Eqs. 9-10, this is true only if the equations are written in ta--s of a rather
than P). By integration, 'MZ = (ZP/ZE')(c- - is) where < is a rcr.diensioc.a
integration constant. By differentiation

aw-. P
0? Ec 5'

Setting K, - KcM, Eq. 24 yields c - (p/2K.c=/7)2/3 and Eq. 25 then becomes

VM2 -K 1/3 - K1o. (26)

For very small a, we may neglect K compared to the first term in the
bracket, and we get

P = asZ E13 V3 .E' 3 va (small v). (27)
CM cm

For Eq. 26 which applies for larger (but still small) a-values, we need to
figure out the integration constant K. Zf the solution were valid up to c - R,
it would be proper to determine K from.the condition that W" - 0 for c - R. The
solution, however, is valid only for c << R, and so we need some other condi-
tion to determine c.

For any K > 0, the curve v(a) according to Eq. 26 obviously has a point of
maximum v. For arbitrary K, this maximum point does not coincide with the e%-
act maximum point in Fig. 3 based on Eqs. 19 and 23. Assuming that the point
of vmax in Fig. 3 is still in the range of small enough c, we may determine K
from the condition that the graph of Eq. 26 would pass through the exact point
of vma. , which is characterized by S.r - 1.198 and qmax - 0.1549 (Fig. 3). Then,
according to Eq. 8, V max - acm" ' and acr - ScrKcm/R'-, and setting v -

vmax, a - 0cr, Eq. 26 yields:

41Z 1/3 E' v... 4/,-r, 1/3 %-ax
K = _;a_ (-~ 2.299 (28)0 cr S €1

Q) O rr c.r

Similar to the arguments related to Eqs. 14-16, the total displacement
over the width wc of the fracture process zone is, approximately,

s 41r2e I/3
" -- -so-----/ - "(9)

Interoretation of Mathematical Results

A-Ithough the displacement v due to cracks has been calculated for points
infinitely far away from the crack plane, the displacement 5cr due to cracking
which arises over the finite width wc of the fracture process zone must be
nearly the same, i e. c r 2 v. This is indicated by some solutions for intex-

acting cracks on paralle. planes at spacing s, which are available in che liter-

ature. E.g., the problem of interacting circular ligaments of diameter 2c and
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spacing h in an ini!nite c7li.ncer of radius I has been solved by Nisi-a-i and
.Noda (8). Thei- results show that the ±nceraction of cracks causes KT :o
change by lass than 1Z if h Z B. (see p. 644 of Ref. 9). For the planir prob-
Ie of an infinite stack of parallel cracks of length Za and spaclng h be-
tween the crack planes, Yokobori and Ichikawa (cf. p. 202 of Ref. 9) found the
crack inceraction to cause a change of KI by less than 1Z if 2a < 0.08h, and
less than 10Z if 2a < 0.21h. Al.hough Nisitani and Noda's solution is united
to c/h S 0.5, one can nevertheless invoke Sc.-Venant's principle to conclude
thac interaction of cracks on parallel planes of spacing s should be insig-
nificant when approx4-acely either a < h/5 or c I h/5. S:L-.ce for concrete h
must be about the same as s, the preced-_g solu:ions are asm-mp:ot-aiv e.=act
for crack initiatian (a << h) as well as for te-inl crack coalescence (=:s h).
So we cay incer ret v as the addi:ional displacexent across the fracture
process zone due to the cracks, provided that all the cracks occur on one
plane.

The most interesting feature of our results is the fact that the soften-
ing scress-displacement diagram v(a) exhibits a maxi-, displacenent v.., after
which both v and a must decrease. This behavior is known in scability theory
as the snapback instability. It means that, according to the present mathe-
matical model, the -ligament tearing cannot be stable even in a displacemanc-
controled test after the critical state of va. is attaed. This conclusion,
when first reached by the writer in March 1987, appeared to conflict with the
current generally accepted softening models and thus to cast doubt on the as-
sumptions of the present aaalysis. A stress-displacement diagram v(a) which
declines with a negative slope all the way to a zero stress is widely used in
the present practice of finite element fracture analysis of concrete, is em-
bodied in Hillerborg's fictitious crack modal (12,1) and is also implied in-
directly in the crack band model (13,14,1). This present practice has appar-
ently been also corroborated by extensive experimental evidence, particularly
the measurements of the softening stress-displacement diagrams by Reinhardt
and Cornelissen (15), Petersson at al. (16), Shah et al. (17), Willam et al.
(18), Wecharatana (19) and others. Some of these tests included very large
crack displacements, which exceeded 20-ttmes the displacement vP at peak stress
and corresponded to a reduction of stress to less than 5% of its peak value.
Yet the test specimens remained stable and no snapback instability has been
reported.

During the discussion at the RILMM-SM1 International Conference on Frac-
ture of Concrete and Rock in Houston (June 1987), however, it has transpired
that the experimentalists themselves have doubts about the interpretation of
their test results, particularly the way the additional displacement due to
cracking, accumulated over the fracture process zone, should be determined
from measurements. The possibility of different interpretations of the test
results then finally encouraged writing and publishing of this paper.

It has been very gratifying to the writer to learn in June 1987 that H.
Horii et al. (20), studying concrete fracture, as well as M. Ortiz (21) study-
ing ceramic composites, obtained a similar result independently. They dis-
covered the snapback instability on the curve a(v) by modeling the fracture
process zone ahead of the main crack as an infinite rov of identical uniformly
spaced line cracks on the extension line of the main crack. The plots of v(2
that they obtained look similar to that in Fig. 3. Their analyses, however,
were planar (two-dimensional). This would be fully realistic only if the
cracks ahead of the frontal edge of the main crack had the shape of infinite
strips parallel to the frontal edge (in the z-direction, Fig. 1) and normal to
the plane (xy) in which the problem is analyzed. Such crack strips, however,
do not appear to be very realistic for concrete, especially for the initial
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stage of small cracks as well as the fin-al stage of smal liga=ents between
the crack ti;s.

Due to the three-dimensional nature of the aggregate fr-nework, the
spacing of the initial small cracks, located in the contact layers between
the adjacent aggregate pieces, is certain to be about the sane in the di-ec-
tion x of fracture ;ropagacion and in the direction z nor--al t it (in the
crack plane xz); see Fig. lb. The sane must be true for the final stage of
very small ligaments, as is clear fro= Fig. le. So one -ay conclude that the
three-di-ensioral mode., of small ciraular cracks should be =cre realisti. :n
this regard it -ay be also noted th, in a previous analysis (2,1) the as-
s--.tion that the crack spacig is dee--ed by the aggregate spaci=g gave a
realistic and ex=e--entally corroborated result for the dependence of con-
crate strength f on the aggregate size.

The fracture energy Go of concrae is equal to the cross- .ached area
023460 in Fig. 5a which is enclosed by the complete st=ess-4splaceent curve
a(v). The softening curve a(v) begins at the tensile strength liit f.t
Since infinitely small microcracks propagate only at infinitely large stress
o (Eq. 3), there must initially exist in the material certain =icrocracks of
finite size aa, as already mentioned (Eq. 12). The initial loading up to the
strength limit occurs without any tirack growth and is, therefore, elastic,
described by the initial straight line (02 in Fig. 5a). In the line-crack
models of the fracture process zone, such as Hillerborg's, the seress-dis-
placement curve which describes fracture is assumed to start on the vertical
axis at point ft', and so the crack displacement dcr to be used in Riller-
borg's model must be understood as dc= - v - a/K where K is such that v(f
- ft'/K - 0, i.e. K - ft'/v(ft ).

Since cracks neither extend nor sjorten during unloading, the unloading
path from any point on the a(v) curve (Fig. 5a) is a straight line toward the
origin (Fig. 5a).

When stress a is controlled, the crack becomes unstable at the peak-
stress point f' (point 2 in Fig. 5a). When the displacement is controlled,
the crack becomes unstable when the curve a(w) attains a vertical tangent
(Sa/aw - 0); w is the load-point displacement, w - v+a/C where C is the
elastic stiffness of the structure without the cracks, and v is the addi-
tional displacement due to the cracks. The higher the value of C, the smaller
is the stress a cr at the snapback instability. The smallest acr is obtained
for C - -, which coincides with the acr value for the curve a(v) (Fig. 3). If
the displacement is controlled, the stress after the snapback instability
drops instantly to 0. This drop is called the snapdown. The snapdown path
is dynamic and the motion is accelerated. The energy corresponding to the
cross-hatched area 0454 to the left of the snapdown path in Fig. 5b is con-
verted into kinetic energy, which is emitted as the energy of a sound wave
(acoustic emission). In fact, the existence of sound emissions in a displace-
ment-controlled fracture test implies the occurrence of snapback.

To conduct an approximate analysis in a static manner, the equilibrium
snapback path (40 in Fig. 5a) must be replaced by a a(v)-diagram that is
equivalent in terms of energy. Thus, the equivalent a(v) diagram for static
finite element analysis must preserve the correct area Gf enclosed by the
0(v) curve, as indicated either by the vertical snapdown path 367 in Fig. Sc
or the gradual equivalent softening path 89 in Fig. 5d. If static analysis is
conducted on the basis of the actual snapdown path TT in Fig. Sc, the results
are incorrect in terms of energy, thus violating the most fundamental re-
quirement of mechanics.
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FIG. 4
Crack Systems Lpected for Ocher Aggregate Configurations

The energy--equivalent snapdown along the vertical path 367 in Fig. 5
can actually occur only if a dynamic disturbance at point 3 imparts to the
system a kinetic energy that is at least equal to the area 3463 (per unit
length of fracture). Area 3463 is equal to the loss of kinetic energy along
the path from point 3 to point 6 in Fig. 5c. Along the path 67 the kinetic
energy is increased by an amount equal to the area 0760. The system ends at
point 7 with the same kinetic energy as it bad at point 3 if the areas 3463
and 0760 are equal, which is true if the area 02370 is equal to Gf.

It must be admitted that certain elastic fracture mechanisms which are
neglected in the present analysis could considerably alter the shape of the
v(a) curve including the snapback instability. These include: i) inclina-
tion of the main crack with regard to a cubic lattice of aggregate; 2) other
types of periodic lattices, e.g. of tetrahedral type (Fig. 4a,b); 3) random
arrangement of aggregate pieces, which is of course the rule rather than an
exception. Irregular random aggregate arrangements prevent the cracks to be
all located on a single plane, contrary to che assumption of the present an-
alysis. This has for consequence that the crack edges have not only a Mode I
stress incensity factor, but also Mode 11 and Mode III (i.e. shear) stress in-
tensity factors, and may therefore propagate in directions that are inclined
with regard to the main crack plane (Fig. 4a). It remains to be seen whether
such mechanisms can significantly alter the shape of the v(a) curve, especial-
ly the value of Vmax*

The shape of the v(a)-curve could be also significantly influenced by
various inelascic phenomena. These include: i) resistance to a crack closing
due to fragmentation debris located in the crack space; 2) frictional slip on
inclined cracks (Fig. 4a); and 3) irreversible deformations taking place else-
where than microcrack tips. Since along the snapback path (40 in Fig. 3a) the
portion of the crack that has formed previously is closing, the resistance to
crack closing may significantly alter the snapback path and prevent complete
recovery of displacement v as a - 0 (i.e., prevent return to point 0 in Fig.
5a). if crack closing is prevented completely, then there is no equilibrium
path after the critical state of snapback (point 4, Fig. 5a) and the system can
only follow the dynamic snapdown path (45 in Fig. 5b). But for reasons of sca-
bility it must follow this path anyway, and so a prevention of crack closing
does not seem to alter the essential behavior.

it should also be recognized that the difference in elastic moduli between
the matrix and the aggregate, as well as the fact that the microcrack fracture
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FIG. 5
Stress-Displacement Diagrams for Fracture Process Zone Modeling
and Meaning of Fracture Energy.

toughness Kcz is probably lower at the aggregate-mortar interfaces than inside

the matrix or the aggregate, has not been taken into account in the present

analysis.

General Asvmptotic Analy Iss for Small- Ligament Transmitting Force or Moment

We will now show that snapback instability is a general characteristic of
orack coaLescence or terminal stage of crack ligament tearing in three as
well as two dimensions. We consider the ligament size to be infinitely small
compared to any cross section dimension of the structure. We assume the sub-

sequent ligament shapes to be similar. Let P and H be the internal force of
any direction and the internal moment about any axis transmitted across the
ligament. (The special cases of P include a normal force or a shear force, and

L of M a bending moment or a twisting
I 1,W'~ //~/moment.) According to St.-Venant 's

/ .~\7 Tprinciple, P or M can produce sig-
•2 ,nificanc stresses and significant

(\\.strain energy density only in a

three-dimensional region whose size
/ CLI and La in Fig. 6) is of the

/, ,same order of magnitude as the lig-
ament size c. The strain energy
produced in this region by P or M

110 EA I 2Ek3c/ C30)
2c,- - M2  .1Z )

F:G. 6 2 ZZI - 2Ek 4

Ligament Joining Two Halfspaces where A - ksc - cross section area

or Halfplanes
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af the liganent, Z , k5 c; = oment of inertia of che cross sec:ion of the !4;a-
en:, and ,.consants. The re.noce displacement v and roca:ion a
associated with. P and M, resoec:ively, are

Viu ?au
ap M . (31)

Te energy release ratas due to P and X per unit ci:=ur-nerence of the liga=e=:
cross section are:

! 3UI 13Z U 3'AZ
7- M G, a -,k. (3:)

Ue::.-ng G: - G. or G- - G" where G KPE - fracture energy of the -a:te ."
(a consc=a), we have:

for P: c for Ml: c - " (33)" -- k -_j k-G.J

Substituting this into Eq. 31 we get, for very small ligament size c, the
asymptotic approximations:

for P: v.- clp1/3; for M: 8 - cM "S /5  (34)

where cl,c Z - constants. Note chat .Eq. 34 for P agrees with Eq. 27 that we
derived before in a different manner.

From Eq. 34 we conclude that for force loading of the ligament the curve
v(P) mist return to the origin (v - P - 0) as P - 0 (c - 0). This means that
there must be a snapback at some #inite P-value.

On the other hand, for moment loading of the ligament, the curve e(M)
tends to infinity as H -- 0 (c - 0). So there can be no snapback.

For two-dimensional problems a sia.lar asymptotic analysis is possible,
but only for the moment loading. We have Z - k bc3 where b - thickness of the
body, and instead of Eqs. 30-32 we gee

H2  H2U2 Z 2 k Zc = Ek~bc- (35)

U, M (36)a 1-4 Ek. bc-

G - -Zi (37)
Z ac Ek4 bc'3

Setting G - Go, we have c - (HZ/GfEkb)1/3, and substituting this into Eq. 36,
we get, for siall c:

8 - cr,' /3 (38)

So for moment loading in two dimensions there cannot be any snapback either.

For two-dimensional problems in which the ligament is loaded by a force,
the foregoing approach fails because, as it turns out, the curve v(P) is not
of a power type as P -- 0. For a sufficiently short ligament, the stress field
must be the same as that near a ligament joining two elastic halfplanes. For
that problem it is known that K, - (P/b)(2/,c) where P - normal (centric)
force and c - half-length of the ligament (Fig. 6). Therefore -;W/3c - bG -
bK:E' - 2PZ/-rE'bc, and by integration the total strain energy release is:

S 2P 2 Zn c (39)

where co - integration constant. Furthermore,
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V - - - --- Z (40)

Set.ing K_ - K - critical value of !, we also have c - ZPZ/bZKZ and sub-
stitucion Eino Eq. 40 yields c

4? -?- (41)

The curve v(?) described by this equation is not of a power type, which eax-
plai-s why the t ype of approach used in Eqs. 30-38 would fail. The curve v(P)
obviously exhibits a snapback since, for P -- 0, 1i= v - 0. T-he critical szare
is characterized by the condi:ion v/3P - 0, which yields the critical value
Pc. (%c,/.)'. b/e, from which vmax - (.c 0 /=)hK,/E'e.

Fro= the fact that ligament tearing in Mode I or I or III always ex-
hibits s-a.back c the :orce across the ligament is nonzero it follows that
the stress-l-isplaceenc cu-rve for the =icrocrack pat-er.s in .ig. 4 =st, too,
terminate with a snapback.

Conclusions

1. lo model the fracture process zone of a hecerogeneous brittle material such
as concrete, it may be assumed that the initial stage of cracking consists of
a two-dimensional array of small circular (penny-shaped) cracks in the plane
of the main crack, and the final stage consists of a tw;o-dimensional array of
small circular ligaments. Both cases may be approximately solved from the
known value of the Mode I stress intensity factor for a penny-shaped centrally
located transverse cracc in an axially loaded long cylinder, and a small cir-
cular ligament in such a cylinder. These solutions may be considered to be
asymptotically exact for very small cracks or for very small ligaments.

2. The spacing of the initial small circular cracks as well as the final cir-
cular ligaments may be considered to be determined by the spacing of the large
aggregate pieces in concrete.

3. The solution indicates that the curve of the additional transverse dis-
placement v due to the crack versus the remote normal stress a exhibits a
softening segment which does not descend all the way to zero stress, as as-
sumed in the current fracture models, but terminates with a critical state of
snapback instability at which the curve a(v) has a vertical tangent (Fig. 5).
The displacement at this critical state, Vmax, is the maximum possible dis-
placement due to the cracks. After this critical state, the equilibrium path

a(v) approaches the origin as a cubic parabola with a positive slope. This

postcritical path is unstable and a dynamic snapdown occurs in reality (Fig.
3b). For approximate static analysis an energy-equivalent softening path with-
out snapback (Fig. 3c,d) needs co be introduced.

4. The present calculation of the stress-displacement curve neglects: 1) the
situation in which the cracks are inclined and are loaded in Modes I and III;
2) possible strong interactions between adjacent cracks (other chan those meet-

ing at the same ligament); 3) the effect of the differences of elastic moduli

between the aggregate and the matrix; 4) the fact that the aggregace-matrix

interface may be weaker than the adjacent solid material; 5) the resistance to

crack closing due to fragments located in the crack space; and 6) the inelastic

phenomena taking place elsewhere chan =icrocrack tips. I: remains to be deter-

mined whether the essence of the preceding theoretical conclusions remaIns

valid if all these phenomena are taken into account.

5. General asymptotic analysis shows that when the crack ligament transmits a

force, its final tearLng is always characterized by snapback instability and
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there exists a maximum displacement. When, however, the ligament transmi.s
only a moment, there is no snapback instability and the rotation due to the
applied moment grows beyond any bounds. These conclusions are valid for three-
dimensional as well as two-dimensional situations, for normal as well as shear
forces, and for moments about any axis, bending as well as torsional (i.e.,
for Modes 1, II and II).
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Avvendix.- Stabilitv of Three-Point Bent Soecimen

The stability analysis of crack ligament tearing is not only of interest
for micromechanics-based modeling of the fracture process zone, but also for
various macroscopic problems. To illustrate and corroborate the general con-
clusions based on St.-Venant's principle, in particular Eq. 38, consider as
an example the three-point bent beam specimen (Fig. 7), for which L - span,
h - beam depth, a - length of crack (or of crack plus notch), c - h-a -

length of ligament, b - beam thickness. In the literature there exist for
this specimen various approximate KI-formulas. However, those which are often
used are invalid for small a/h. Nevertheless, a formula which is valid for
the entire range 0 < a/h < 1, is asymptotically exact for c - 0, and generally
has an error under 0.5%, has been derived by Srawley (22) for the case L - 4h:

K.. vr F (a) F 1 .99-s(l-a)(2.15-3.93a+2.7n
2 )

2 v n(I + 2 ) (I - a ) / '- ( 4 )

where a - a/h. The rate of release of the total strain energy W of the whole
specimen is

2.0 -s

/1
0.015 S = LP/(bh Xc)a= 0.075

q = Bh 'u/(Io L)

a = /*

C .0 0. 050 T-

A

0.2 00
0.305

0.400 0.48

0.0-, I

0.0 0.5 1.0 1.5

q
?s . 7

Nondizensional Stress-Displacement Diagram
Calculated for the Three-.oint Bent Bea= Specimen.
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a W K1  9, ?ZLZ (43
aa F 4bE I. .- E c.(3

a W9
w da faaE1 h da F F(a) (44)

0y ;-a~r am b 4n

in which
' (a) - . ,F'. (a')d3'. C5

The dellection v under the load nay ow be calculated as

- 9-PL2  
( (46)a?- 2b£ h -- Z

:. the crack is propagating, we -must have Kr - Kc - critical value of K1 (i.e.,
fracture toughness of the material). Thus, Eq. 1 yields:

2bKc h3/2
-,~ L (47)3"v= L V-L FI (m) ,

Defining the nondimensional load S and the nondimensional displacement q,

S M L3q E/Y' (48)

we have from Eqs. 7 and 6:

2 " q - 3 ;. (a)" (49)
3V'TrT Fi~a) cF1 CM

The last equations represent a parametric definition of the non-dimen-
sional load-defleccion diagram S(q). Evaluation of S and q for various C-
values yields the diagram in Figs. 7 or 8. We see that indeed there is no
snapback, as indicated already by Eq. 38. The extent to which the actual
zeasuee &vj diagram in caa three-point bent test deviates from the shape in
Fig. 8 is an indication of inelastic behavior and existence of a large frac-
ture process zone.

Consider now the asymptotic behavior for small ligament, c/h - 0. For

that case Eq. 42 simplifies to the form:

- 0.995(FL/b)(r/h 3 )1/2 "3/ Z  ( c c/h). (50)

Usin$ aW/I& -h aW/3a - -hbKZ/E, and integrating, we get W - 3.11 F2 LZI'Z/

(2bh-E), from which r

v - 3W/3? - 3.11 PL 2 - 2 /(bh 2 E). (51)

Setting KT - K and solving & from Eq. 50, Eq. 51 becomes

v - (C.45/E)(bZK2L/-r)2/3 p-1/3. (52)
c

Exponent -1/3 agrees with Eq. 38 derived before for two-dimensional moment
loading in general.

For very small a, v - P-, as can be verified from Eqs. 46-47.
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INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING. VOL. 26. 1805-1823 988)

NON-LOCAL YIELD LIMIT DEGRADATION

ZDENEK P. BAZANT* AND FENG-BAO LIN'

Department of Cicil Engineering, .Vorthwestern University. Evanston. IL 60206, U.S.A.

SUMMARY

Presented is a new type of a non-local continuum model which avoids problems of convergence at mesh
refinement and spurious mesh sensitivity in a softening continuum characterized by degradation of the yield
limit. The key idea. which has recently been proposed in a general context and has already been applied to
softening damage due to stiffness degradation. is to apply the non-local concept only to those parameters
which cause the degradation while keeping the definition of the strains local. Compared to the previously
advanced fully non-local continuum formulation, the new approach has zhe advantage that the stresses are
subjected to the standard differential equations of equilibrium and standard boundary or interface
conditions. The new formulation exhibits no zero-energy periodic modes. imbrication of finite elements is
unnecessary and finite elements with standard continuity requirements are sufficient. Two-dimensional finite
element solutions with up to 3248 degrees of freedom are presented to document convergence and efficacy.
The formulation is applied to tunnel excavation in a soil stabilized by cement grouting, with the objective of
preventing cave-in (burst) of the tunnel sides due to compression softening.

INTRODUCTION

As is now well documented, macroscopic description of distributed cracking or other types of
damage in various materials requires constitutive models which exhibit strain-softening-a
decrease of stress at increasing strain, or in general a loss of positive definiteness of the tangential
moduli matrix of the material. This behaviour is observed macroscopically in many materials.
including concrete. rocks. stiff soils. grauted soils, two-phase ceramics, various fibre composites,
wood and particle board. paper, ice. especially sea ice, coal, filled elastomers. polymer and asphalt
concretes, fibre-reinforced concretes, various refractories and metals exhibiting void nucleation
and growth in large strains.

The loss of positive definiteness of the elastic moduli matrix was probably first considered by
Hadamard s who pointed out that this property is inadmissible from the mathematical viewpoint
since the wave speed ceases to be real, the hyperbolic differential equation of motion of the
continuum changes its type to an elliptic differential equation. and consequently wave propa-
gation becomes impossible. This argument was later restated and expanded by Hill. Thomas.
Mandel. Truesdell and others.' About a decade ago, however, it became clear from experimental
results that Hadamard's argument is not quite realistic since real materials in a strain-softening
state possess not only a non-positive definite moduli matrix for further loading, but also another
incremental moduli matrix for unloading which is always positive definite. Thus. Hadamard's
argument about imaginary wave speed applies only to loading waves, while unloading waves can

*Professor of Civil Engneenng
'Graduate Research Assistant: presently Assistant Professor o(Civil Engnneenng. Polytechnic University, Brooklyn. N.Y.
11201. USA

002-5918, 88/081805-19509.50 Received - October 198"
i 1988 by John Wiley & Sons. Ltd. Revised December 198"
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still propagate in a strain-softening material. This fact makes a crucial difference. This is one
reason which rendered strain-softening problems mathematically meaningful, even for a local
continuum.

Solutions to certain wave propagation problems for a local continuum with strain-softening do
exist, and some are unique.2 ' 7" 1, 6.-. 22 Explicit step-by-step finite element solutions converge
to these continuum solutions, and appear to do so almost quadratically. It must be noted that. as
Sandler5" emphasized, problems of this type generally belong to the class of ill-posed initial-
boundary-value problems. The ill-posedness per se, however, cannot be considered physically
objectionable. Ill-posed problems, along with a change of type of the differential equation, are
accepted as physically realistic in other branches of physics and engineering, e.g. fluid mech-
anics.3 Thus, it appears that the problem with strain-softening models is physical rather than
mathematical.

Noting that a positive stiffness must be considered for unloading in a softening material.
Ba.ant 2. 3 showed in his stability analysis of static strain-softening in a bar that, according to a
local continuum model, strain-softening must localize into a region of vanishing volume. The
same type of behaviour is exhibited by dynamic wave propagation solutions of strain-softening
structures. 6 , 7. 12.21.22 The consequence of this behaviour is that the structure is predicted to fail
with a zero energy dissipation. This is of course physically impossible and represents an
unacceptable model.

To prevent such unacceptable behaviour, one must introduce mathematical models called
localization limiters, which force the strain-softening region to have a certain minimum finite size
and thus ensure the energy dissipation at failure to be finite. The simplest, albeit crudest,
localization limiter, which was proposed in 1974" and was later adopted in the crack band
model,' 6. 1 consists in limiting the finite element size by a certain minimum value, which
represents a material property and is approximately related to the size of inhomogenities in the
material. Although this approach appears to yield good results for problems of fracture mech-
anics type, in which the fracture is localized, it might nevertheless be too crude in that it makes it
impossible to resolve the distribution of damage density throughout the failure region. thus
precluding precise calculation of the energy dissipation, which is important especially for dynamic
problems such as impact.

The most general form of a localization limiter appears to be the concept of non-local
continuum. This concept. introduced on the basis of statistical analysis of heterogeneous
materials by Kr6ner,35 Krumhanzl, 36 Kunin, and Levin,' and widely applied by Eringen and
Edelen2 5 and others, was proposed for application to strain-softening models in References 4 and
6. At present it is clear that numerous particular forms of non-local formulations are possible.
One new form which appears to be simple and effective for the modelling of strain-softening
behaviour was recently introduced in References 19, 48 and 49 in the context of continuum
damage mechanics. The basic idea was that only the softening damage should be treated as non-
local while the elastic behaviour should be treated as local. Baiant and Pijaudier-Cabotl' 19
extended this idea further, proposing that, most generally, an efficient model for strain-softening
should subject to non-local description only those variables which cause strain-softening and
should retain a local definition of strain. Thus the material model may be characterized as a non-
local continuum with local strain. This concept may be applied to all possible constitutive models
with strain softening. Its micromechanics justification has been presented.58

Ideally, two kinds of strain softening (or damage) may be distinguished.

1. Degradation of material stiffness, which is caused by microcracking, or by void nucleation
and growth. In this case the unloading is ideally a straight line towards the origin i Figure
I(a)).
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Figure I. Various types of unloading characteristic of strain-softening materials

2. Degradation of the yield limit, which is associated with the reduction of the areas of cohesive
or plastic-frictional connections within the material and does not cause a decrease of
material stiffness. In this case the unloading slope is the same as the initial elastic slope
(Figure l(b)).

The real behaviour is better approximated as a combination of the foregoing two basic types
(Figure l(c)). The unloading slope in reality does not remain constant but varies during the
progress of unloading (Figure l(d)). The initial unloading slope is often very close to the initial
elastic slope (Figure l(d)). So, for the initial unloading behaviour, the yield limit degradation
(Figure l(b)) is a good simplification.

The objective of the present study, which was summarized at a recent conference,'" is to
formulate for yield limit degradation a non-local continuum model with local strain, verify that it
exhibits proper convergence in displacements, stresses and energy, and apply it in finite element
analysis of tunnel excavation. As for the degradation of stiffness, a non-local model with local
strain has already been developed and demonstrated by finite element examples.",. 18. .

Before embarking on our analysis, it is proper to mention that localization limiters may be
given alternative forms. For example, the averaging integral in the non-local model may be
expanded in Taylor series. This leads to higher-order gradients in the definition of strains and in
the continuum equations of motion."' In particular, higher-order spatial gradients may be
applied to the strength limit or yield limit, or to the yield function in general. This type of idea was
apparently first proposed in 1952 by L'Hermite' 2 as part of his study of shrinkage cracking. Later
the idea of the dependence of strength limit on strain gradient was applied in the problems of
bending of concrete beams with earthquake engineering applications. 3

2 Recently, the idea of
introducing gradients of strength or of the yield condition was developed in the finite element
context. 26 43. 15. 56

As another alternative, one may avoid the problem of localization by lumping all the softening
deformations into a line. This leads to the line crack models with softening non-linear cohesive
zone (line segment) ahead of the crack tip 1cf. Reference 5), which were pioneered for concrete by
Hillerborg with co-workers.2 9 

'o This approach is applicable to cracks whose spacing is not less
than a certain characteristic length that must be considered to be a material propertys Combined
models, in which a line crack or strip is embedded in a larger finite element, were formulated by
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Pietruszczak and Mr6z. Willam et al. = and others. Some authors have criticized the idea of
strain-softening on various grounds:5' I -.1 however, the criticized aspects have been overcome by
the non-Local models as well as other mathematical devices.

Much attention has recently been focused on the models of continuum damage
mechanics. 33 .3 -4 .*" These models, however, were considered as local, and it has been
overlooked that in such a form they are plagued by the same problems of localization (and the
associated spurious mesh sensitivity) as the other strain-softening models.' It is nevertheless
possible to rectify these problems by incorporating into the continuum damage mechanics
formulation the concept of non-local continuum with local strain.' 9 " '

As another device to overcome the problems due to change of type of the differential equation.
it has been proposed to introduce various forms of strain-rate sensitivity or artificial viscosity. 4 -5

This seems, though, only a partial remedy, since strain and energy dissipation can localize to an
arbitrarily small volume after a sufficient time period. Finally, it should be noted that the
localization of strain and damage due to softening, analysed from the stability viewpoint already
in 1974 (Baant2 ). is not the same problem as the localization problem analysed by Rudnicki and
Rice," 3 Rice.5" Prevost ° and others. In those problems, the localization was of primarily
geometrically non-linear origin.

NON-LOCAL CONTINUUM WITH LOCAL STRAIN

The typical property of non-local continuum is that some of the variables in the constitutive
equation are defined by spatial averaging. Thus, for example, the spatial average of the magnitude
of plastic strain zP at location x may be defined by the equation

= P(x -j x(s - x)&'(s) d V 2'(x. s)v(s)dV ()

in which

V,(X) Yfxs-x) dV 2)

X'(x, s) = .2(s - X)/ Vo(x) 3

The pointed brackets < > denote the averaging operator, V=volume of the body and xx
=weighting function which defines the averaging; s is the general co-ordinate vector. V, has
approximately but not exactly the same meaning as the representative volume in the statistical
theory of heterogeneous materials (Kr6ner,3 5 Krumhans 36 ). The averaging may be specified by a
uniform weighting function, = 1, which is non-zero only within a representative volume such as
a circle in two dimensions or a sphere in three dimensions. However, numerical computations
show much better convergence if the weighting function is smooth. Thus, a suitable form of the
weighting function for numerical computation appears to be, for example. the normal (Gaussian)
distribution function (error density function):

2(x) - e-(&IiI/i) (4)

in which. for one. two and three dimensions

ID: Ix 2I=x 2 . k=, 7 =1.772 (5)

2D: xi-=xI: . y-. k=2 16)

3D: x=x'-:", k =(6v, r) '13 =2"149 (7)
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is the characteristic length. a material property which defiaes the diameter of the representative
volume (a line segment. circle or sphere); I is determined from the condition that the representative
volume has the same volume as the normal distribution function extending to infinity x, Y.
=Cartesian co-ordinates).

For a finite body, the normal distribution function extends beyond the boundary of the body.
In that case the region outside the body is deleted from the integration domain V, both for the
calculation of the average (equation (1)) and the calculation of the representative volume V,
(equation (3)). This fact causes V, to depend on location x.

For numerical finite element computations, the integrals in equations (I H3) are approximated
by finite sums over all the integration points of all the elements. Only the finite elements whose
integration points are closer to point x than distance 21 need to be included in the sum since for a
greater distance the value of - is negligible.

In the initial application of the non-local concept to strain-softening, " it was assumed that the
strain was non-local. In such a case the variational derivation of the differential equations of
motion or equilibrium and of the boundary conditions from the virtual work principle' yields
field equations and boundary conditions of a non-standard form, with extra terms in the form of
integrals or higher-order derivatives. This aspect causes considerable complications in numerical
implementation. Recently' 8 " 9. 48 it was discovered that application of the averaging operator to
strains is not necessary, and that a sufficient localization limiter may be obtained if the non-local
averaging is applied only to those variables which control strain-softening. In that case the
statement of the virtual work principle is the same as for the classical continuum, from which it
has been mathematically proved that the differential equations of motion or equilibrium with
their boundary conditions as well as interface conditions remain the same as in the classical
theory (see Ba.ant and Pijaudier-Cabot' . 19). Consequently, the continuity requirements for the
finite elements are the same as for a local finite element model (and no element imbrication,
introduced in the initial non-local model for strain-softening, is needed). It has also been generally
proved that the damage dissipation. which is controlled by the variables that govern softening,
cannot localize to a region of vanishing volume.' 9

REVIEW OF CLASSICAL INCREMENTAL PLASTICITY

First we must define the local plasticity model which we want to generalized to non-local form.
The yield surfaces are written as F(O, K) = 0 and the yield function is assumed to have the form
F(a, K) =f(a) - , in which a = stress tensor; function f(6) may be regarded as the effective stress
a*, and K is a hardening-softening parameter which may be interpreted as the yield limit: Kc may in
general not only increase (hardening) but also decrease (softening). We assume for the sake of
simplicity that there is only one hardening-softening parameter. As usual, we require the
increments U P of the plastic strain tensor c' to follow the normality rule

AEP = F. A =. i (8)

where a comma preceding a subscript denotes a derivative, i.e. F., =OF'aa6, and A represents a
scalar proportionality coefficient. The loading-unloading criterion is defined by the conditions

FA;.=O0, AA >0. F <O (9)

which must all hold simultaneously.
We may now assume that K depends on EP but not directly on 6. and introduce Prager's

continuity condition
F..: Aa - F, . ,": F =A. = 0
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where the colon (:) denotes a tensor product contracted on two inner indices. We may also denote

H -F, K:.,. P,':F.0

where H may be called the plastic tangential modulus and K is assumed to depend on zP. Thus the
continuity condition becomes F.:Aa-HA.=O, i.e. At=(F,:Aa)/H. Substituting this and
equation (8) into the incremental stress-strain relation

Aa - D : (A - A&P) (10)

where D is the tensor of elastic moduli, we may solve for A. and obtain the well-known relation 6

F..:D:A(1
F,,: D: Fl H

Usually the effective plastic strain either is considered as the path length of plastic strain. i.e.
Ace =(AzP:AeP)"12 , or defined by work equivalence a: A&P = o*A&P. We choose the latter definition.
and then

Acp = -. 6f: F.,A2 (12)

The yield function can be written in the form F(a, K) =f(a) - K- function f(a) may normally be
assumed to be a homogeneous function of degree n, for which Euler's theorem states that
6 :f. - nf Furthermore, the yield function may be written in such a form that n= 1 and f(a) -= C.

Also, the hardening-softening parameter K may be assumed to be a function of the effective
plastic strain el rather than a general scalar function of FP, i.e. k = k(&P). Then the aforementioned
expression for H may be further simplified as follows:

H -- - F ~~,r 4 E, , -s.P 6 ":f

_.C, nf (13)

NON-LOCAL GENERALIZATION

According to the concept of non-local continuum with local strain,19. 6 equation (10) must be
generalized as

Aa = D: (A - AIP) (14)

in which At remains to be local while AIP is the non-local plastic strain increment. Note that we
distinguish the superimposed bar, which is a label for non-local quantities, from the pointed
brackets ( >, which represent an operator.

We now present the algorithm of the initial stiffness method for an implicit finite element
solution with step-by-step loading. The computations in each loading step proceed as follows.

1. The calculation begins by carrying out an elastic finite element analysis of the structure
using the applied load increments Af (or prescribed displacement increments) and the nodal forces

Af". For the first iteration, Af" are taken as zero. For the subsequent iterations. forces Af" are
determined from the previous iteration of this loading step: they represent the nodal forces
equivalent (according to the principle of virtual work) to the unbalanced stresses determined in
,ep 6 of this algorithm (defined below). This finite element analysis yields Au and A&, where Au is
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the column matrix of all nodal displacement increments and At is the corresponding column
matrix of strain increments Ifor all integration points of all finite elements). The elastic stress
increments are obtained as

Aa'= D: AE (15)

and the final stress values are ai = a, + Aeg, where subscripts I and F refer to the initial and final
values for the loading step.

2. Next we calculate for all the integration points of all the elements the values FF
=F(a1 + Aa*, KF), where IF is the final value of K for the loading step and is taken for the first
iteration as KF = K,, and for subsequent iteration as the final -value from the preceding iteration.
If FF <0, the material at the integration point is still in the elastic range or unloaded.

3. Now FF>0. This means that the end value of stress is outside the loading surface and must
therefore be adjusted to the loading surface. First we need to determine the ratio r (0 < r < 1) such
that F(a, + rAa*, KF) = 0. Approximately, by linear interpolation, F, + r(FF - F) = 0. from which we
calculate r = F /(FF- F1 ) for all integration points of all elements.

4. To take into account the plastic strain increments, we calculate (for all the integration points
of all elements) the value of H according to equation (13). For F., K.,, and &P. we use the values
corresponding to a, and E[ for the first iteration, and to a, + Aa and E[ + AP* for the subsequent
iterations, with A. and UP taken from the preceding iteration. The strain increments correspon-
ding to the previously determined stress increments (1 - r)Aa' are (I - r)Az. Thus, according to
equation (11), we calculate

AA=F.:D:(I -r)A(
F,: D:F,.+ H(16)

for all the integration points of all elements. These are still the local AAi values. F,. are here
evaluated for a, for the first iteration and for cr, + Aa for the subsequent iterations using always Aa
from the preceding iteration. The corresponding local plastic strain increments are then calcula-
ted as AzP= F.,;. (equation (8)), for all the integration points of all elements.

5. Now comes the non-local operation which yields for each integration point of each element
the average non-local plastic strain increment:

-A-(x)> = '(x, s)A&P(s) d V:: ZzJi. h)Atr) (17)
y V J

The last expression is a numerical approximation of the integral. The subscripts in parentheses
refer to the integration points of all finite elements in the system, and z,* j denotes the values of
the function 2'(x, s) for the integration point x(j) (of this or another element) relative to point x,
i.e. . =x-xf)/V,,) Note that, for sufficiently large IxP)- xU, i.e. for sufficiently remote
integration points, the value of ' can be neglected because the normal probability function
decays with distance very rapidly. For numerical implementation, it is convenient to evaluate all
the coefficients a( , in advance of the finite element solution and store them as a two-dimensional
array in the computer's memory.

6. The definition of the non-local equivalent plastic strain increment AiP may be considered
similar to equation (12), i.e. a*AIP =c,: <AsP>. Accordingly, we evaluate for each integration point
of each element

AUP--- -a: < Azp/ 1
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and define non-local A- by the relation 6:F.,A,-=a:AA&P>. Then we may evaluate for each
integration point of each element

.: :(AgP> ) * jP
A :F. 6:F,, (19)

These non-local values differ from the local Ai given by equation (16) and are not equal to
(A;.>. Also. note that equation (19) does not imply (A&P) to be equal to F ,A. Therefore. the non-
local plastic strain increments UP which are normal to the loading surface may now be obtained
for all the integration points of all elements as

AP = F, A(20)

The final stresses cr. for the loading step are first estimated as
a = a, + r Aa' + D: [( I - r)A& - U~P]  (21l)

in which i -r)Az corresponds to the stresses outside the yield surface. Next we obtain the final
value ,cF = kjiM, where 9; = 9P + AP = final value of the equivalent plastic strain. The a'F from
equation (21) does not lie on the yield surface. We apply the radial return method (Figure 2) to
adjust it to the yield surface and get the correct final stresses (FF. The differences between 0, + A0,
and F represent the unbalanced parts of the elastic stress increments, and must therefore be
balanced by applying additional residual forces. This is done later in step I of the next iteration.
The objective of the iterations of the loading steps is to make the residual forces approximately
vanish.

7. This is approximately achieved by imposing the condition Y (residual force)2 < c,, where the
sum is over every nodal point and &I is a specified small number representing the tolerance. If the
tolerance is not satisfied, then we return to step I and start the next iteration of the same loading
step. If it is satisfied we also return to step I but start the first iteration of the next loading step.

The loading-unloading criterion which is implied by steps 2. 3 and 6 of the foregoing non-local
algorithm may be concisely stated as

FA;/.=O. A,;->O. F<O (22)

As an alternative to the foregoing algorithm, we may apply the averaging operation directly to
A. instead of A&'. This is computationally more efficient since at each point there are many
components of AzP but only one A,.-value. In this alternative, instead of equation (19) we calculate
for each integration point of each element the non-local value as

A = <A.>. .( (23)

Figure 2. Randial return method for plastic analy-sis
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The non-iocal plastic strain increments then are AV"=FA, -(equation 120)) and the non-local
effective plastic strain increment is A'=(a:AV)/a*, from which we get the value of KEPR The
remaining equations and the computational algorithm are the same as before. This alternative
has been found to yield about the same numerical results as the originally described formulation
with the averaging of Ae. and appeared to converge equally well.

EXAMPLE I. DAMAGE BANDS IN TENSIONED RECTANGULAR PANEL

Figure 3 shows the example of a rectangular panel subjected to uniform prescribed displacement
on top boundary and fixed at the bottom boundary. with the lateral boundaries free. The problem
is solved with three rectangular meshes using four-node quadrilateral finite elements. In order to
initiate a softening band symmetrically, it is assumed that one element at the middle of each side
has the initial yield limit smaller by 5 per cent than the remaining finite elements. The side of the
finite element in the crudest mesh is assumed to be equal to the characteristic length 1 which
figures in equation (4). The material is assumed to obey Tresca yield condition IFigure -4b)). and
the hardening-softening rule is specified in such a manner that after the attainment of the initial
yield limit K, the value of K decreases linearly as a function of c", with a slope H. until a zero value
of ic is reached (Figure 4(b)). After that K remains zero. Unloading and reloading are elastic.

Figures 4(a) and (b) show the curves of the reaction force P on top as a function of displacement
u enforced at the top boundary. The results in Figure 4(a) are local, and those in Figure 4(b) are
non-local, based on the present model. It is clear that the local response shows strong spurious
mesh sensitivity in the softening range. Were the mesh refined further, the softening response
would result in a snapback instability, i.e. the softening response after the peak point would revert
to a positive slope. For the present non-local formulation, the results for the three meshes are
approximately the same, and especially those for meshes 2 and 3 are nearly identical. This
documents that the presently proposed non-local formulation eliminates the phenomenon of
spurious mesh sensitivity which has plagued previous uses of strain-softening in finite element
computation.

uuu

11h~ 1 1311h

Mesh 1 Mesh 2 Mesh 3

Figure S Rectangular panel with various mesh vubdvisions11 h I
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Figure 4. Load deflection diagrams calculated with various meshes according to the local and non-local plasticity model

The strain profiles across the cracking zone are shown in Figure 5. For the local case. the zones
are seen to localize into sharper spikes when the mesh is refined. The most important aspect of
strain-softening is the energy dissipation. As shown previously for the local solution, the energy
dissipated due to strain-softening exhibits strong sp"icus mes shs t, ity due to localization of
the softening front, and generally tends to zero as the mesh is refined to zero. This is documented
for the local computation in Figure 6(a). With the present non-local model, by contrast, the
energy dissipation appears to converge; see Figure 6(b) (N = number of elements in the mesh, and
W-energy dissipated up to the instant at which the displacement on top is 0.025).

The softening zones at various stages of loading (for u=0.00854, 0-00868 and 0-00889) are
plotted in Figure 7. Note that for the refined meshes the width of the softening zone is not a
constant but varies. As a consequence of this fact, the energy dissipation rate per unit length of
the strain-softening band is also not a constant but varies during the progress of loading. This has
an interesting implication for non-linear line crack fracture models with a cohesive zone. such as
Hillerborg's model for concrete: the fracture energy which would match the present results could
not be considered as constant but would have to be variable. Moreover. due to the variation of
the width of the softening hand. the non-local solution cannot be equivalent to a line crack
solution with a unique stress-displacement diagram. Rather. a different stress-displacement
diagram would have to be considered for various stages of computation in order to match the
present results.
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Figure 5. Profiles of vertical normal strain at vertical line of symmetry across strain-softening zone obtained for various
meshes with local and non-local plasticity model

EXAMPLE 1I: COMPRESSION SOFTENING DUE TO TUNNEL EXCAVATION IN
GROUTED SOIL

The present non-local model was applied to evaluate the safety of tunnel excavation in a softening
soil, with particular reference to the construction of a subway in a non-cohesive granular soil
stabilized by cement grouting. To make it possible to exacavate the tunnel by machines, the soil in
the region of the tunnel is stabilized by injecting cement grout into bores drilled from the surface.
During the excavation the surface of the excavation can be left unlined, which makes this
construction method highly economical and susceptible to mechanization. Shortly after excav-
ation, after the machine moves away, the tunnel surface is sprayed with fine concrete and later a
relatively light concrete lining is cast in situ. The bores from the surface are spaced so densely that
the grouted regions around the adjacent bores overlay, so that a grouted monolith is created by
grouting. The grouted soil resembles concrete of very low strength and is highly inhomogeneous,
with ungrouted pockets at a spacing of about 50 to 100 cm, and lumps of highly cemented stiff
material.

The grouted soil mass can be treated as a continuum only on a scale sufficiently larger than the
prevalent spacing of the weak pockets and highly cemented lumps. The characteristic length I of
the homogenizing continuum should be roughly equal to this spacing. certainly in the order of
magnitude, and therefore it is quite large, much larger than. e.g. for ordinary concrete. So this is
an application where the modelling by non-local continuum scems particularly appropriate.
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The tunnel and the calculation results are shown in Figures 8-12. The soil is characterized by a
Mohr-Coulomb yield condition (Figure 8) with a yield limit that decreases with increasing plastic
strain. Prior to excavation, the vertical and horizontal normal stresses in the soil are caused solely
by gravity and they increase linearly with the depth. The values of the surface tractions on the
tunnel contour are calculated from the initial stress values due to gravity. Excavation is simulated
by progressively decreasing the values of these surface tractions to zero. The decrease of these
surface tractions causes a decrease of the lateral confining stresses as well as an increase of the
vertical compression stress near the tunnel sides. This results in strain-softening behaviour in
compression near the sides of the tunnel and may lead to collapse, manifested as a cave-in (or
burst) of the tunnel sides.

The geometry of the tunnel is defined in Figure 9. To assess convergence of the finite element
solution with compressive strain-softening, the problem was solved (on a Cray X-MP'48
supercomputer) with four two-dimensional meshes shown in Figure 10, for which the number of
degrees of freedom (unknown nodal displacement components) was N = 218, 608. 1840 and 3248.
The characteristic length I of the grouted soil, shown graphically in Figure 10, has been assumed
to be 1= 18 m. which is roughly equal to the typical spacing of the lumps of highly grouted soil
and of weakly grouted pockets as observed at the construction site. The material properties are
fully defined in Figure 8. in which E= 11.4 ksi. v=0.33, c=5.7 psi. 0=35 , H= -57.8 psi.

The problem was solved both conventionally (i.e. using the usual local form of the present
plasticity model with strain-softening) and by the presently proposed non-local formulation.
Figure 11 shows the plots (for the four meshes used) of the horizontal inward displacement u, at
the tunnel side surface as a function of the degree De of excavation Idefined as the ratio of the
applied surface tractions to the surface tractions that existed initially, before the excavation
started). Figure 12 shows for the completed excavation (D, = t) the profiles of the vertical normal
stress a. on a horizontal line passing roughly at the midheight of the tunnel. The minimum point
on these plots corresponds to the strength limit (the peak point of the stress-strain diagram). To
the right of the minimum point, the soil is in a hardening state (elastic), and to the left it is in a

(a)
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(bi 0
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Figure S. %lohr-Coulomh tcld criterion %kith irain-soltcning due to .ield limit deardtlation
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Figure 9. Boundaries of the softening zone at full tunnel excavation obtained for the four meshes shown in Figure I0. and
the exaggerated deformation

state of plastic strain softening, in which the compression stress at tunnel surface is reduced to
about 1/4 of the strength. The lateral expansion of the compressed softening soil is quite marked,
as is evident from the deformed finite element mesh shown in Figure 9(a), in which the
displacements are exaggerated 70 times.

The local analysis results IFigures 11. 12 top) for the four meshes reveal a poor convergence in
the softening zone at the tunnel sides. i.e. strong spurious mesh sensitivity. These results are
subjective since they strongly depend on the analyst's choice of the mesh. By contrast. the non-
local analysis results iFigures 11. 12 bottomi for the four meshes exhibit a far better convergence.
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Figure 10. Finite element meshes in the analysis of a tunnel excavation in a grouted soil with a degrading yield limit

Especially the results for the meshes 3 and 4 are sufficiently close to each other for all practical
purposes. So the non-local results appear to be objective.

The analysis indicates that a cave-in (burst) of the tunnel sides would not occur. i.e. the
excavation without supporting the sides should be safe. In finite element calculations for various
other values of material parameters. other dimensions and a different depth of the tunnel below
the surface, it was often experienced that the displacements as a function of the degree of
excavation would begin to increase rapidly and eventually convergence of the iterations of the
loading step could not be achieved, even with the non-local formulation. Such response indicated
that the tunnel would be unstable and could not be excavated safely.

Figure 9 also shows the boundaries of the softening zone obtained by non-local analysis with
the four meshes. Note that all these boundaries are nearly identical, which confirms good
convergence. The softening boundary is defined as the locus of the points at which the material is
at the peak stress state and represents for the present constitutive model also the boundary of the
elastic zone. The softening zone is in a state of a high vertical compressive strain and a high lateral
tensile strain.

The numerical results confirm that the present type of non-local continuum exhibits no
spurious zero-energy periodic instability modes which were encountered for other non-local
models. 6. " As for the efficiency of computation. it has been experienced that for the large meshes
the non-local finite element runs were usually running faster and converged more rapidly than the
corresponding local ones. Apparently the fact that the non-local operator stabilizes the response
improves the convergence to such an extent that it more than offsets the additional time the
computer needs to evaluate the averages of plastic strains over the finite element mesh.
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Figure 11. Response curves in the analysis of a tunnel excavation in a grouted soil with a degrading yield limit
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Figure 12. Stress profiles in the analysis of a tunnel excavation in a grouted soil with a degrading yield limit istress in
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CONCLUSIONS

1. For strain-softening plastic materials with a degrading yield limit, localization of energy
dissipation into a region of vanishing volume may be prevented by treating the plastic strains in
the constitutive equation as non-local while the elastic strains remain local. This is achieved by
processing the plastic strains through a spatial averaging operator, in which the characteristic
length reflects the size of material inhomogeneities.

2. In contrast to the usual local approach, the finite element formulation based on the concept
of non-local plastic strains exhibits correct and rapid convergence at mesh refinements and avoids
spurious mesh sensitivity. The computer running times appear to be no longer than those for the
local approach.

3. The new formulation has been verified for tensile as well as compressive strain softening due
to yield limit degradation. It makes it possible to assess the safety against cave-in of tunnel
excavation in softening soils.
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APPENDIX-SOME DETAILS OF PLASTICITY MODEL

The meaning of tangential plastic modulus may be clarified by considering uniaxial loading with
non-zero principal stress a, and the corresponding strain a. In this case D reduces to Young's
modulus E and, from equation (11), A;.=AE E,(E-H). The stress-strain relation becomes
tAa, =EA&11l-&E(E+H)], and the expression for H is

H dK da, da 12d&P= dEP :ds-I-dr.c E,-t _E-t24

Obviously, H > 0 signifies hardening (E, > 0) and H < 0 softening (E, < 0).
The envelope of Mohr circles for Mohr-Coulomb material is characterized by the equation:

r = c - a tan 0, where c = cohesion. 0 = integral friction angle and a, r = normal and shear stress
axes for Mohr's circle. This may be shown to be equivalent to the condition

a, - 3 =2c cos 0 -(al +a3) sine) (25)

where a,, a3 = maximum and minimum principal stresses. The principal stresses are calculated as

J sin ( O+60 0 ))
a2} I A sinO (26)
,a3 3 11, 3 sin( - 6011

in which II = aka, J, -SijSij, 2 , J3 = sjsjjS&, 3. 0 = sin -'( _ 15. 3 J3J. , ,3, -300 <,O<300: s,,

= stress deviator. The yield surface thus becomes

K 1i o ) Q7)
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where K =ce cos (. To model strain-softening, the cohesion c is gradually decreased.
The numerical values used in the tunnel analysis were E= I14 ksi, v=0-33, c=5-7 psi. 0i=35 .

H = - 57-8 psi.
The Tresca criterion is a special case of the Mohr-Coulomb criterion for 0i=0. and the

material parameters for Example I were E = 3122 ksi, v = 0-18. a. = 2c = 0'4 ksi. H = 80 ksi.
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APPENDIX C4
* NONLOCAL MICROPLANE MODEL FOR FRACTURE, -

DAMAGE AND SIZE EFFECT IN STRUCTURES

By Zdendk P. Balant,' F. ASCE, and Joiko Obolt2

ABSTRACT

A generalized microplane model, which was previously developed to describe ten-

sile cracking as well as nonlinear triaxial response of brittle-plastic materials in

compression and shear, is implemented in a finite element code. To limit localiza-

tion instabilities due to strain softening and the consequent spurious mesh-sensi-

tivity, the recently proposed concept of nonlocal continuum with local strain (non-

local damage) is adopted and is combined with the microplane model. An effective

numerical algorithm permitting large loading steps is developed, applying the idea

of exponential algorithms previously used for creep. Problems due to nonsymmetry of

the tangential stiffness matrix are avoided by using the initial elastic stiffness

matrix in the incremental force-displacement relations. Numerical results demon-

strate that the microplane model, which has previously allowed an excellent descrip-

tion of the existing test data on nonlinear triaxial behavior of concrete as well as

unidirectional and multidirectional crack or crack shear, is endowed (in its non-

local generalization) with the capability of modeling also tensile fracture. The

model yields the correct transitional size effect observed in concrete and agrees

with the size effect law proposed by Balant. The formulation is applicable to

brittle-plastic materials in general.

INTRODUCTION

At present there exist basically two kinds of material constitutive models:

(1) the macroscopic tensorial models, in which the constitutive relation is formu-

lated in terms Gf the macroscopic continuum stress and strain tensors and their

invariants; and (2) the microscopic nontensorial models, in which the micromechanics

!Prof. of Civil Eng., Center for Advanced Cement-Based Materials, Northwestern
University, Evanston, Illinois 60208.

2Visiting Scholar, Northwestern University; Assoc. Prof. on leave from Techn.
Univ. of Zagreb.

____ ____ ___



of deformation is described by some suitably simplified model and the constitutive

material properties are characterized by a relation between the stress and strain

components (or forces and displacements) on the microlevel. The former is the

classical approach, which has led to important advances in the modeling of concrete

(e.g. Chen and Chen, 1975; Balant and Bhat, 1976; Willam and Warnke, 1974; Gerstle,

1980, 1981; Dougill, 1976; Balant and Kim, 1979; Ortiz, 1985; Cedolin, dei Poli and

Iori, 1983; Lin et al., 1987). However, the more realistic macroscopic constitutive

models for concrete are rather complicated and are very difficult to identify from

test data since they contain many material parameters, typically over fifteen of

them, while at the same time the agreement with test data is still less than satis-

factory. Extensive recent efforts have not succeeded in overcoming these drawbacks,

and it seems that the macroscopic approach has already yielded what it can and that

further great efforts can only provide diminishing returns.

More promising seems to be the second kind of material models, which use micro-

mechanics ideas and exist now basically in two versions: the random particle system

modeling of the aggregate structure, which however poses forbidding demands on com-

puter time, and the microplane model. The latter still requires more computer time

than even the most sophisticated macroscopic models, but with the present computer

capabilities is manageable even in larger finite element programs. Compared to the

macroscopic constitutive models, the microplane model trades computer time for con-

ceptual simplicity. The modeller does not need to bother with tensorial invariance

restrictions and needs to deal only with a few stress and strain components on

planes of various orientations, called the microplanes. A simple, nontensorial

relation between these components defines the constitutive properties. The macro-

scopic stress and strain tensors are related to the microplane stresses by a

virtual work relation and by a static or kinematic constraint.

The basic idea of microplane models, which is due to G. I. Taylor (1938), was

initially applied only to metal plasticity and went under the name "slip theory."

Extensions to nonsoftening behavior of rocks and soils were made by Zienkiewicz



and Pands (1977) and Pande (1982). Some major conceptual modifications were needed

to make Taylor's idea applicable to strain-softening brittle behavior (Balant and

Oh, 1983, 1985; Balant and Gambarova, 1984) and most recently to strain-so-tening

brittle-plastic behavior, typical of concrete (Batant and Prat, 1988). This latest

formulation provided so far the most complete material model for concrete under

tensile as well as compressive criaxial stress states. Since the deformation on

various planes in the microstructure could no longer be called "plastic slip," the

more general term "microplane" was coined (Balant, 1984).

The stress and deformation interactions in the microstructure are in essence of

two kinds: (1) interactions over a distance, and (2) interactions between orienta-

tions. The microplane models take into account only the latter. The former can be

most simply taken into account by the concept of nonlocal continuum (Kroner, 1968;

Eringen and Edelen, 1972; cf. also Batant, 1986), in which the strain at a point

depends not only on the strain at the same point but on the entire strain field in

a certain neighborhood of the point. The nonlocal concept has already been proven

to be a useful cure to the problemswith localization instabilities which are

endemic for local continuum models. Applications of the nonlocal concept, however,

have so far been confined to the macroscopic tensorial constitutive model. The

objective of the present paper is to marry this concept with the more powerful

microplane approach, thus gaining a model that can handle in a rather realistic

manner both fracture (or damage localization) and nonlinear triaxial deformations.

First we need to describe precisely the form of the microplane model to be used.

Then we develop its nonlocal generalization. In the process, we also formulate a

new, very effective algorithm (of exponential type) for the analysis of loading steps

REVIEW OF MICROPLANE MODEL

(a) Basic Hypotheses and Strain Components.

Hypothesis I. - The strains on any microplane are the resolved components of

the macrcscopic strain tensor ci. This hypothesis, which represents a kinematic

constraint, yields the relations (Fig. la):



(CR)i " niCij; CN = nlnjeij; eD " nfi C V j (1)

(CT)i" nkik-i-nk(nnkejk) k (nk6ij +ni6ik 2ni n ik' T Y/ -  ' TiCTi* (2)

Here latin lower case subscripts refer to cartesian coordinates xi (i = 1,2,3);

repetition of subscripts implies summation; CR is the strain vector on a microplane

whose unit normal is ni, CT and eT are the tangential vector component of CR and its

magnitude, C Ti are the components of eT' and e N is the normal strain component on

the microplane (Fig. la). The normal strain vector is separated into volumetric

strain CV = C kk/3 and deviatoric strain cD9 i.e. CN = C V + D . This split, proposed

by Ba'ant, makes it possible to obtain any value of elastic Poisson ratio between -1

and 0.5 and, more importantly, has been found by experience to be essential for al-

lowing good representation of post-peak softening for both tension and compression.

Hypothesis II. - Each microplane resists not only normal strain CN' but also

shear strains, CTs whose vector cT is assumed to keep the same direction as the

vector of shear stresses a . In the initial formulation by Balant and Oh (1983,T

1985), the resistance to CT was neglected, which sufficed for modeling multidirec-

tional tensile cracking. However, if compression response should be modeled simul-

taneously, resistance to cT must be considered (or else the ratio of compression and

tensile strengthsis incorrect and snapback instability develops soon after the peak

stress in compression).

Hypothesis III. - The response on each microplane depends on the main lateral

strain CL, which is equivalent to the dependence on the volumetric strain V W Ckk /3.

This feature was found to be necessary for modeling triaxial test data for very high

confining pressures (but not other data).

Hypothesis IV. - The stress-strain curves for each microplane are path-indepen-

dent as long as there is no unloading on this microplane. During each unloading and

reloading, which is defined separately on each microplane, the curves of the stress

and strain differences from the state at the start of unloading are also path-inde-

pendent. Thus, all the macroscopic path-dependence is produced by various tombina-

tions of loading and unloading on all the microplanes. It may be noted that some



microplanes may get unloaded even for macroscopically monotonic or virgin loading,

thus making the response path-dependent. The number of possible macroscopic path

directions is enormous (for 21 microplanes there are 221 possible tangential stiff-

ness matrices in each loading step, due to all possible combinations of loading and

unloading).

Hypothesis V. - The volumetric, deviatoric and shear responses on each micro-

plane are mutually independent. This of course greatly simplifies data fitting and

was shown to suffice to fit each data.

(b) Microplane Stress-Strain Relations and Damage Rule.- In this work we adopt

the stress-strain relations of Balant and Prat (1988), with only some minor simpli-

fications. According to the foregoing hypotheses, the behavior on the microplane

level can be described by nontensorial path-independent total stress-strain rela-

tions of the form: aV M FV (CV' aD - FD(CD), aT - FT(CT). For two reasons, namely

representation of unloading and application of the nonlocal damage concept, it is

convenient to cast the total stress-strain relation in the form of continuum damage

mechanics:

GV W CVcV aD " CDCD, T " CTcT  (3) -' }

in which, except for volumetric compression,

CvWC $ (l - v), CD u( WD), Cr = C (l- W. (4)

The last relations are co-opted from continuum damage mechanics, whose application

on the microplane level is simpler than on the macro-continuum level because all the

variables on the microplane are scalar. CV, CD, CT represent the secant moduli

which are variable; CV = FV(cV)/cV, CD - FD(CD)/CD, C1 - FT(CT)/CT; CO, CD, CT

are the initial values of C , CD, CT corresponding to elastic behavior; and wV' wD'

WT are the volumetric, deviatoric and shear damage on the microplane level. Fitting

of selective test data by Balant and Prat led to the following approximation for

virgin loading:

forc V  O: V a 1 -(exp - '1 Vm) (5)

V el



Sexp-IE 
Im)for e a 0: 1D - - e 1 (6a)

D '4D ej2fn

for e < 0: = - ex _'l)(6b)

W = 1 - exp(--ea, (7)
T e3

where el, e2, e3, m, n, k are empirical material constants. Note that ET cannot be

negative since it represents a magnitude (description of shear by means of shear

strain magnitude CT is made possible by hypothesis II). In the volumetric behavtor

there is no damage (wV=O) and the response for virgin loading is described by

for v < 0: = C l + V/a) + (8)

where a, b, p, q are empirical constants.

For the description of unloading and reloading, we introduce a simpler rule

than that in Batant and Prat (1988), assuming that the tangential moduli for un-

loading or reloading are equal to the initial elastic moduli. This Aimplification,

of course, would not suffice for a good description of large unloading cycles but

seems adequate to represent the moderate degree of unloading that occurs on some

microplanes during strain softening.
max mmn

Virgin loading for e occurs when e A Z 0 and (eV -e V  )(cv -min ) a 0 whereV ~V V V V
max min
e mx CV m are the maximum and minimum values of eV that have occurred so far;

otherwise unloading or reloading takes place. The loading criteria for CD and cT

are analogous. The increment of cT must for this purpose be defined as ACT -

+ 1- ITInot as (which is always positive).

(c) Incremental Macroscopic Stress-Strain Relations.- For incremental solutions

with incremental loading, the total stress-strain relations need to be differen-

tiated to yield incremental relations: daV - CvdcV + CvdCv, daD a CDdcD + CDdCD,

d T = CT dc T + C TdC . For iterative solutions, it is convenient to introduce

incremental moduli Cvi CD CT which may be equal or larger than CV, CD, C . The

foregoing incremental relation may be rewritten in the form:

V V V D D D -D; AT CTT T 9)Acv iCcA v A C,



in which

of =-C A +(a - C) A A eCL +(CD-CD)cD; o --C C + (C - T"C )Ae
V V V V V V' D DD D T T T_ T T*(10) (.

cV , AuD , Ac; Tare formally treated as inelastic stress increments in a step-by-step

iterative solution.

As shown in the previous work, stress equilibrium between the micro- and macro-

levels may be approximately enforced by the virtual work equation:

41o 6C 2 A 6C + 60 dc )F('n)dS (13 Aoij ij - 2fS (ACN N Tr TrF(11)

where n are the unit vectors normal to the microplanes; 6cij , 6eN and 6eTr represent

the small variations on the macro- and micro-levels. The left-hand side of Eq. 11

represents the macroscopic work in a unit sphere of material, while the right-hand

side represents the microscopic work over the surface of the same sphere. The

factor 2 is due to the fact that the integral needs to extend only over a hemi-

sphere surface, S. F(n) is a weighting function of the normal directions n which

can introduce anisotropy of the material in its initial state. We assume F() - 1,

which implies isotropy. Substituting Eqs. 1, 7 and 9, one can get from Eq. 11 the

incremental macroscopic stress-strain relation:

&aij - ijkm km -&a'j (12)

in which

S 2 S[(D T )n n- nnm+nj + 1 a)
Cijkm 3 -V D CT nnkmnmC13)

+ CT(ninkjm + nin + n~nk 6  + njn m6i)]F()dS ) F'-d

AG f3 S ( n (&a" +a") + (n + n 46 -Znnn )A" ]F(')dS. (14) P7
11J ' 2s nnj( V D jj r r) CTr

C is the macroscopic incremental material stiffness tensor, and Ac" are theijkm ii
associated macroscopic inelastic stress increments. To make the calculations

efficient, the tensorial coefficients in Eqs. 13 and 14, such as ninjnKnm, njnk6im ,

are generated only once at the beginning of the analysis and are stored in the com-

puter memory.

Tensor Cijkm can have different values depending on the choice of CV9 CDo CT.

There are two basic choices:
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1. One choice is to set CV M CV9 CD = CDo CT " CT for the integration points

that are loading, and C O = C D' CC C C for those that are unloading or re-
v I aD D' T T

loading. The resulting tensor Cijkm changes from step to step and is anisotropic.

It is also nonsymmetric, except when Cv = CD. In the case there is no unloading,

the resulting Cijkm represent the secant stiffness tensor.

2. Another choice is to set C = C0 C = C0  d = CO for both loading and un-2 V D D' T T

loading-reloading. In this case C ijkm is always symmetric and equal to the initial

stiffness tensor C ijkm which is here considered to be isotropic; Cijkm =

(K - 2G/3)6ij6km+ G(6ik6jm + 6.m6 jk) where K, G = initial elastic bulk and shear

moduli; K = E/3(1 -2v) where E - Young's modulus, v - Poisson ratio.

The computational efficiency is usually higher for the second choice because of

the following advantages: Tensor Cijkm is always the same, and so the structural

stiffness matrix need not be recalculated at each iteration of each loading step.

All the inelastic effects are then represented by 4c: a tensor of fewer components

than Cijkm. The iterative procedure in this case coincides with the well-known

initial stiffness method (e.g., Owen and Hinton, 1980). When we discuss nonlocal

generalization we will see another advantage: tensor C. is always local and svm-
i.jkm

metric.

The first choice usually increases computational requirements since Cijkm need

to be recalculated in each loading step. However, the iterative process generally

converges faster. In the interest of stability of computations it is advisable to

keep the values.of Cijkm for all the iterations of the same step the same as in the

first iteration, in which Cijkm are determined on the basis of the stresses and

strains solved in the previous load step.

There are also instances where it is necessary to calculate tangential stiff-

ness tensor C i.e., the stiffness tensor providing the relation do -

Ckt dc For example, in plane stress analysis (in plane x1 , x2) the stiffnessijkm km*

coefficients C~ are needed to ensure that the transverse stresses vanish.
33km 3



These coefficients can be calculated as the o33-values when each of eii is 1, while

all the others are 0 (and o ij 0). This procedure is of course equivalent to cal-

culating C from Eq. 12 with C = C t t C t where for virgin loadingijkm V D D' T T'

Ct , dFv/dIv, CDt = dF /de CT T dF/dcT (tangential moduli for the microplane),

and CV C , T C O a -CO for unloading and reloading.
V' D D' T T

Another case where Ct  needs to be calculated is when the equilibrium responseijkm

path of the structure is suspected to exhibit bifurcations. Contrary to widespread

opinion, stability of iterations does not guarantee that bifurcations are absent or

t
that .stable post-bifurcation path is followed. Criteria involving C iik and the

lowest eigenvalue of the associated tangential stiffness of the structure need to

be checked (BaZant, 1988a,b).

(d) Material Parameters and Poisson's Ratio. - Matching of Eq. 11 to Hooke's

law yields the Young's modulus and Poisson' ratio (Balant and Prat, 1988):

P5 - 2n- 3C, CD15
E - (l-2v)CO 10 + 2n + 3CD T CT

V V
Inverting these relations, one gets:

CO
T a 10(l -2v) (16)

" 9(l +v)
V

If -- 0 and * 0, then v - 0.5; and if n - or -, or both, then v -1. We

see that v satisfies the well-known thermodynamic restriction, namely -1 < V < 0.5,

and that the entire range of v can be obtained with the present microplane model

(this was not the case for the previous microplane models in which the idea of

splitting eN into eV and cD did not exist). In the fitting of test data, it is con-

venient to take the given (measured) values of E (Young's modulus) and v (Poisson's

ratio) as the basic parameters. The value of the ratio n - CD/CO may then be

chosen as any real positive number. Then Eq. 15 yields CO - E/(l- 2v), and Eq. 16
V

provides

CO - 1r5(1 - 2v) 2)c. (17)T 3l+v V

Balant and Prat (1988) found that a good choice for fitting of all the test data

on concretes is n -1. The initial Poisson's ratio (v) and Young's modulus (E) for
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concrete is known or determined in advance, and so parameters a, b, p, q, el, e2 ,

e3 , -, n, k have to be found by data fitting. Parameters a, b, p and q can be found

independently of the others by fitting hydrostatic pressure test data for compres-

sion (cV < 0). The exponents m, n and k can be taken as constants. Therefore, only

three free parameters (el, e2 and e3) have to be found by fitting triaxial test data

other than the hydrostatic pressure curve. This is not a difficult task.

(e) Integration over a Hemisphere. - The microplane model trades conceptual

simplicity for high computer time requirements. Thus, numerical efficiency is very

important. The integrals in Eq. 13 and 14 need to be evaluated numerically. This

must be done a great number of times - in every load step, in every iteration of

the step, and in every integration point of every finite element. Therefore, "'e

evaluation of these integrals over a hemisphere must be as efficient as possible.

This problem has been studied in detail. Efficient Gaussian-type formulas for in-

tegration over a unit hemisphere have been identified (Stroud, 1971) and some new

superior ones found (Balant and Oh, 1985, 1986). These formulas generally approxi-

mate the integrals in the form:

47r n
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in which subscript a refers to a certain discrete set of microplanes characterized

by the spatial discretisation of their normals associated with points on a unit

hemisphere, and wa are the weights (numerical integration coefficients) for these

directions. In the present study, Balant and Oh's(1985, 1986121-point integration

formula is used (Fig. ib). Any known formula with a lesser number of points does

not give sufficient accuracy in the strain-softening regime. When there are sym-

metries (plane strain, axisymmetry) the number of integration points can of course

be reduced; e.g., for plane strain or stress, the 21-point formula reduces to a -

point formula.

EXPONENTIAL ALGORITHM FOR LOAD STEPS

In every iteration of r-th load or time step, we can use the known macrostrains

C: (r) and their known increments Acij(r ) to calculate the strains and strain incre-

ijLr



ments on each microplane based on the kinematic constraint (Eq. 1). Then we can

use the known values of e c + c ' N L c +  ' and Le to calculateN V +D' TV N V Df .~ c ad.cto alult

the stresses on each microplane by solving the differential equations 9. Each of

these equations could be solved by using a central difference approximation. How-

ever, such an approximation often appears unstable when the stress-strain relation

has a negative slope (strain softening), and, even if the computations remain

stable, a large error is usually accumulated. The result is that the stress is not

reduced exactly to zero at very large strains.

These drawbacks can be eliminated by the so-called exponential algorithm,

initially developed for aging creep of concrete (Batant 1971, Bazant and Wu 1973)

as a refinement of the viscoelastic algorithms of Zienkiewicz, Watson and King

(197 ) and Taylor, Pister and Goudreau (197 ). Later, Batant and Chern (1985) ex-

tended this algorithm to creep with strain softening. We will now adapt their

exponential algorithm to the microplane model.

The basic idea of the exponential algorithm is that the integration formula is

the exact solution of the differential equation obtained for the current loading

step under the assumption that the material properties, the loads and the prescribed

inelastic strain rates are constant in time. To develop the formula of exponential

algorithm for our case, we proceed similarly to Balant and Chern (1985), using

analogy with Maxwell's spring-dashpot model. The response in each step is then

similar to stress relaxation, and the advantage is that stress relaxation always

ultimately yields a zero stress value if the load step is very long. Even though

our problem is time-independent, we associate with the load steps a fictitious time

t. Then, for each microplane and for both (normal and tangential) directions,it is

possible to rewrite the stress-strain relation so that it formally looks like the

equation for Maxwell's model. Since the relations for cV' £D and cT are the same,

we now drop subscripts V, D and T. From a - Cc we have - Cc + Cc, i.e.

+ a C (9)E a



where the superior dots denote time derivatives, E - -Ca/, - (dC/dc)i, t -A/At

and Ca = (Cr + C r+)/2 for time step number r. In every time step tr t r+ - tr

E can be approximated as a constant, and then the exact solution of Eq. 18 is of

the form

a(t) = A e (r) + C Et (20)a

where A is an integration constant. From the initial condition a = a at t = tr r

it follows that

a(t) = ar e(t - tr/E + ( (t- )C E Ac. (21)

For the end of the time step, t rt t + At, we get

a yo & = a e -6z  + (i - e z )C --e (22) rr+ +r r a rz

in which Az = Lt/E - -C/C . Eq. 22 can be rewritten in the form of a pseudo-

elastic stress-strain relation on the level of each microplane stress component

a = D Ac - Ao" (23) (,,\
J

where D = C (l-e -Z)/Az, Ao" - D AW" and Ac" - (l-e- )ar /D; D Ae = Ael' Ace

and Ac" are the elastic and inelastic stress increments.

This algorithm, as well as the similar previous ones, is called exponential be-

cause its formula typically involves an exponential function. Attaching subscripts

V, D and T, one may use the foregoing formulas to determine the stress increments

on each microplane and in both (normal and tangential) directions. The stress in-

crement on the macro-level is then determined using numerical integration over the

unit hemisphere <with 21 integration points), as already described. Numerical ex-

perience with the present algorithm indicated excellent stability and good accuracy,

as checked by time step refinement.

The present integration scheme has also the advantage that any creep law for

concrete can be easily incorporated into the microplane model because numerical

integration for the creep law of concrete is similar and entails the same kind of

numerical stability problems as in the case of strain softening.



NONLOCAL GENERALIZATION OF MICROPLANE MODEL

Macroscopic behavior of concrete requires a constitutive model which exhibits

strain softening, i.e. a decrease of stress at increasing strain, or in general a

loss of positive definiteness of the tangential moduli (stiffness) matrix of the

material. In concrete, strain softening is due to degradation of material stiff-

ness caused by microcracking. In classical, local continuum analysis by finite

element method, strain localization engenders problems of instability, inobjectivity

and spurious mesh sensitivity (Balant, 1976, 1986; Baiant and Belytschko, 1987;

Balant, Belytschko and Chang, 1984). These problems can be avoided by the use of

nonlocal continuum.

Nonlocal continuum is a concept in which the stress at a point depends not only

on the strain at the same point (local dependence) but also on the strains within a

certain neighborhood of the point; in particular, on a certain weighted spatial

average of the strains from the neighborhood. This concept, introduced in elas-

ticity by Kr~ner (1968), Eringen and Edelen (1972), Krumhansl (1968), Levin (1971)

and others, has been applied to strain softening continuum by Balant, Belytschko and

Chang (1984). However, the early form, called the imbricate continuum, proved too

cumbersome.

A more effective form, in which only the variables that are associated with

strain softening are nonlocal and all the other variables, especially the strain as

a kinematic variable and the elastic strain, are local, was proposed by Balant and

Pijaudier-Cabot (1987) and Pijaudier-Cabot and Balant (1987) and further developed

in Balant and Pijaudier-Cabot (1988) and Balant and Lin (1988). In this formula-

tion, called the nonlocal damage theory, the nonlocal (spatially averaged) quantity

is the energy dissipated due to the strain softening. An important advantage of

this formulation is that, in contrast to the classical, fully nonlocal continuum

theory, the equations of equilibrium and the boundary conditions are of the same

form as in the local continuum theory, which is a useful feature for finite

element programming. Another advantage over the fully nonlocal continuum is that



no zero-energy periodic modes of instability exist.

In the case of the present microplane model, the variables that control strain

softening are the damage variables wV' WD and wT' These variables are calculated

from macrostrain ij by means of the microplane strains components EV' CD and ET as

indicated in Eqs. 4-7. The nonlocal generalization is achieved merely by replacing

V' IwD and wT in Eqs. 4-7 with nonlocal damage variables V' D and T,which are

calculated from nonlocal macrostrains e.. by means of the resolved microplane com-- 3-D

ponents of nonlocal strain, V CD and eT' For the load increments in which un-

loading or reloading takes place, the local formulation is used, i.e., the strains

CV' eD2 CT in the relations oV M CV V, aD = CDCD, and aT = CTCT are local, and so

is C.. in Eqs. 12-14.

The nonlocal macrostrain cij, which is needed at each integration point of each

finite element in each loading step, is calculated from the spatial averaging integral

Cij x) V fV a(s- x)C ij (s)dx = fV a'('s,) cij (s)d" (24) ->

The superimposed bar denotes the averaging operator; x, s = coordinate vectors,

a(x) = given empirical weighting function, V = volume of the entire structure, and

V x) - fv a(s-x)dV(s), a'(s,x) a " (25)
r Vr(x)

In numerical computation, the spatial averaging integral is approximated by a

finite sum over all the integration points (whose number is denoted as N) of all

the finite elements of the structure. For convenience of programming, the integra-

tion points of all elements are included in the sum even though for some points the

value of a' (s-x) may be zero. The values of a'(s-x) are generated in advance and

stored as an Nx N square matrix. Vr (x) has approximately the same meaning as the

representative volume in the statistical theory of heterogeneous materials (Kroner,

1968). When the averaging volume protrudes outside the boundary of the body, the

points outside the body must be chopped off and the weights scaled up from a :o a'

so that their sum over the points inside the body would be equal to the original

(unchopped) averaging volume. Due to this adjustment, a' depends separately on x
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and s whereas a depends only on the distance Is-xI. The scaling from a to a'

causes the matrix of weights a' to become nonsymmetric.

Although a weighting function that is uniform over a certain finite represen-

tative volume could be used, it is computationally more efficient (and probably

more realistic) to use a smooth weighting function of a bell shape. The existing

experimental data on the consequences of nonlocal behavior, such as the size effect,

are at present insufficient to decide which shape of function a(x) is more correct,

partly because of limited scope of the data, partly because of their random scatter.

The initial studies of Balant and Pijaudier (1987) and Batant and Lin (1988) used

for weighting function a the Gaussian distribution function. This function extends

with nonzero values to infinity, although its values are negligible beyond a certain

distance from point x under consideration. Recently Balant proposed for the spatial

averaging the following bell-shaped function (Fig. lc) which vanishes for distances

greater than R:

MW [1 - (p/P )2]2 for p < p1; - 0 for p p, (26)

where p - r/kI, p, - R/ki, x - x or (x,y) or (x,y,z) for one, two or three dimen-

sions (lD,2D,3D); x,y,z - cartesian coordinates; and

for 1D: rZ . x2, k - 15/16 - 0.9375

for 2D: r 2 - (x 2 + y 2 ) , k -3/1 7- - 0.9086 (27)

for 3D: r2 . (x 2 + y2 + z2 ), k - (105/192)1/3 - 0.8178.

The above values of k were determined from the condition that volume under function

a(x) should be equal to the volume under function 3(x) that is uniform, 3(x) - 1,

for r < Z, with 3(x) - 0 for r Z L, where I represents the characteristic length

of nonlocal continuum (which gives the size of the representative volume).

A point to note is that the assembled structural stiffness matrices of finite

element systems for the nonlocal continuum with local strains are in general non-

symmetric (Balant and Pijaudier-Cabot, 1988). The nonsymmetry has two reasons:

(1) the fact that, for points close to the boundary, the averaging volume of size R

protrudes outside the boundary of the body, and (2) the fact that the averaging
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volume for a point that is loading (or unloading) may comprise other points that

are unloading (or loading). The consequence is that: (i) if point m is loading and

point n is unloading, the strain at point n affects the response at point m (be-

cause the response at point n is local and at point m is nonlocal); (2) if point

m is outside and point n inside a boundary layer of thickness R, the influence of

strain at n on the response at m is stronger than the influence of strain at m on

the response at n (because the size of the averaging volume for point n is smaller

than that for point m, due to truncation of the averaging volume that protrudes

outside the boundary). For an infinite body in which no point is unloading, the

stiffness matrices are symmetric. Compared to the Gaussian distribution function,

which is nonzero everywhere in the body, the weighting function in Eq. 24 mitigates

the incidence of nonsymmetry because the weighting function is nonzero only in a

limited volume.

It may be noted that the original, fully nonlocal (imbricate) model was giving

symmetric stiffness matrices. In fact, it was shown (Batant, 1984) that the as-

sumption of symmetry in the derivation of the field equation from the virtual work

equation inevitably leads to the imbricate model. However, this model is too cum-

bersome to program and suffers by zero-energy periodic modes of instability which

must be artificially suppressed. The nonsymmetry of the tangential stiffness matrix

in the present nonlocal formulation was initially deemed suspect, but after consid-

erable numerical experience (e.g. Batant and Lin, 1988a,b) it does not appear to

cause any problems. The reason probably consists in the fact that the nonsymmetry

.arises only from damage, a phenomenon for which physics actually imposes no symmetry

requirements.

In the present calculations, nonsymmetry of the structural stiffness matrix was

altogether avoided by always using for the iterations the initial elastic stiffness

matrix. Thus, all the symmetry-breaking nonlocal response was incorporated into

the inelastic nodal forces.
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ITERATIVE NUMERICAL ALGORITHM IN EACH LOAD STEP

1. Before the first load step, evaluate and store the elastic structural stiff-

ness matrix K. Also, calculate the integration formula coefficients used in the

microplane model and the values of the nonlocal averaging function c', and store

them all in the computer memory.

2. For each microplane at each integration point of each element, use the mean

(midstep) strains and stresses from the previous iteration or, in the case of the

first iteration, the final strains and stresses from the previous load step, to

decide whether there is virgin loading, unloading or reloading and to evaluate the

material parameters for each microplane. If at least one microplane at a certain

point undergoes virgin loading, calculate for that point the nonlocal macrostrains

E. . For each microplane, use ei. to calculate -V' e E if there is virgin load-

ing or Cij to calculate eV' CD) CT if there is unloading or reloading. Then, as-

suming that that C = C C= C, CT CO, calculate Ac". for each integration
V =.1 D O D'

point of each element, and then calculate the column matrix Af" of inelastic nodal

force increments. Adding to Af" the matrix of nodal force increments AfL due to

prescribed load increments, obtain the column matrix of the total nodal force incre-

ments, Af, and implement the condition of prescribed displacement increments.

3. Except in the first iteration, use the values of the column matrix Lu of

nodal displacement increments from the previous iteration to calculate the residual

forces Afr . KAu - Af where K - initial elastic stiffness matrix. If lLf r11 is less

than the prescribed tolerance, return to 2 and start the first iteration of the next

loading step.

4. Solve the linear equation system KLu - af where K - initial elastic stiff-

ness matrix, which is the same in every load step and every iteration. From dis-

placement increments Au in every load step and every iteration, calculate the local

strain increments ACij for all the integration points of all elements. Then, after

evaluating ALV'c cD9 LET and deciding whether there is virgin loading, unloading or

reloading, calculate the increments AOV , ACI ACT for each microplane at each inte-



gration point of each element and add them to the final stresses from the previous

load step to get the final microplane stress cV, CD' 0T for this load step. Return

to 2 and start the next iteration of the same loading step.

Numerical finite element analysis using the present nonlocal formulation was

found to exhibit good convergence, excellent stability and no spurious mesh sensi-

tivity at mesh refinements, even in the strain-softening regime. The rate of con-

vergence of the present nonlocal analysis in the softening range was better than

for a corresponding local formulation obtained by deleting the spatial averaging

integrals. Actually, despite the computer time needed to calculate the spatial

averages, the overall running time was faster than for the corresponding local

finite element code provided the number of elements was large. This agrees with

the experience of Balant and Lin (1988) from nonlocal solutions with over 3000

degrees of freedom.

NUMERICAL STUDIES AND SIZE EFFECT

Two examples of finite element analysis using nonlocal microplane models will

now be presented. In both, calculations have been made using four-node isopara-

metric finite elements, with one integration point in example 1, and four integra-

tion points in example 2.

ExamDle 1. - Concrete specimen with depth-length ratio d/h - 600/1400 mm, and

thickness b- 100 mm is loaded in tension (Fig. 2) in the longitudinal direction.

Only one quarter of the n-ecimen is modeled, and plane strain state is assumed.

Strain localization is initiated using weaker elements, as shown by the shaded

finite elements in Fig. 2, by decreasing initial modulus of elasticity by 5%. The

microplane model parameters for concrete are taken as follows: a -0.005, b-0.035,

p -1 .0 , q -1.85, el -0.00006, e2 -0.0004, e3 -0.0004, m- 1.2, n-l.l, k- 1.1, E0 -

30,000 N/= 2 , and v-0.18. Using these parameters, the uniaxial tensile strength

of concrete is calculated as f' - 2.05 N/mm 2 . In nonlocal analysis, the characzer-
t

istic length is assumed to be t -150 mm.

To demonstrate mesh sensitivity in the softening regime, two different finite



element meshes are generated (Fig. 2), the first one with 21 and the second one

with 84 finite elements. The results of the analysis using local conti.uum (Fig.

3a) indicate strong mesh sensitivity. Fig. 3b shows the results of the analysis

using nonlocal continuum, and it is evident that there is no mesh sensitivity.

Io demonstrate stability of the exponential algorithm, the results for different

load steps are plotted in Fig. 3c (for a mesh of 21 finite elements, nonlocal). For

case II the load increment is twice as large as for case I, but the results are

still in good agreement.

Example 2. - To demonstrate that the microplane model using nonlocal approach

correctly describes the fracture of concrete and especially the size effect, three-

point-bend specimens are considered. Three different specimen sizes of size ratios

1:2:4, with geometrically similar shapes, were used. The finite element meshes and

the geometry of the specimens are shown in Fig. 6. The depth of the notch was al-

ways 1/6 of the depth of the beam. This type of specimen was tested by Baiant and

Pfeiffer (1987) using concrete with maximum aggregate size da =12.7 mm; the depth

of the smallest specimen was d- 7.62 cm. The characteristic length is taken as

L-3d . The microplane model parameters used in the finite element analysis area

partly adjusted by fitting test data for the smallest test specimen, and are as

follows: a-0.005, b-0.035, p-l. 0 , q-1.85, e, -0.000075, e2 -0.0012, e3 -0.0012,

n-0.5, m-1.2, k-l.2, E0 .35,000 N/m
2 and v-0.18. From these parameters, the

tensile strength of concrete is calculated as f' - 3.27 N/mm2 (Fig. 4).
t

The maximum loads P, which were previously measured by Batant and Pfeiffer

(1987), are now calculated for each specimen of each size. The va.Lues of the

nominal stress at failure (aN) are calculated as aN - P/bd where b- specimen thick-

ness (38.1 mm) and d -depth of the specimen. The previous experimental results and

the present results of numerical analysis are shown in Figs. Sa,b. The solid and

dashed curves represent the optimum fit of the test results with the present model

and the fits by the size effect law proposed by Batant (1984):

aN n B f' [1 + (d/d 0) (28)
N t
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The optimum values for parameters B and do are obtained by linear regression. For

the previous test results. these parameters are: B- 0.448 and do - 12.04 mm (Fig. 5a).

Figs. 5a and 5b demonstrate a good agreement between the test results and the calcu-

lated results.

In addition, Fig. 6 shows the contours of the fracture process zone at the peak

load for all the specimens, calculated from the finite element results. The radius

of the fracture process zone is found to be roughly equal to the characteristic

length Z, and to increase slightly as the specimen size increases. The figure also

shows the contours of the hardening nonlinear zone around the fracture process zone

and of the zone in which the stresses as a function of strains are elastic with an

error less than 5% of fV.
t

CONCLUSIONS

1. At confirmed numerically, the nonlocal generalization of microplane model

(1) is free of spurious mesh sensitivity and localization instabilities, (2) can be

implemented in a finite element code, (3) allows an efficient solution procedure,

and (4) can handle both fracture (or damage localization) and nonlinear triaxial

behavior with or without strain softening.

2. The nonsymmetry of the tangential stiffness matrix, arising from both the

microplane formulation and the nonlocality, seems to pose no computational problems

if the load-step algorithm is based on the initial elastic stiffness matrix.

3. The idea of exponential algorithm, in which the load-step stress-strain

relation is derived from a certain exact solution of the differential equations of

the microplane model, appears to increase computational efficiency. Although the

computer work per step becomes larger, the exponential algorithm makes it possible

to take much larger loading steps. It also guarantees that the stress at the tail

of strain-softening behavior gets reduced exactly to zero, regardless of previous

numerical errors.

4. The microplane model which has already allowed an excellent description of



the existing test data on nonlinear triaxial behavior, as well as unidirectional

and multidirectional smeared cracking, is now shown capable of modeling at the same

time the tensile fracture.

5. The model is free of spurious mesh sensitivity and exhibits correct tran-

sitional size effect which was previously experimentally verified for concrete

specimens or structures and was approximately described by the size effect law

proposed by Balant.

6. According to the present model, the shape and width of the fracture process

zone in concrete varies, albeit mildly, with the specimen size.

7. The method of nonlocal generalization, the exponential algorithm, and the

capability to describe fracture with transitional size effect is not limited to

concrete but should be applicable to brittle-plastic materials in general (e.g.,

ceramic composites, rocks and stiff soils).
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Figure Captions

Fig. 1. (a) Strain Components on a Microplane, (b) Numerical Integration Points,

and (c) Weighting Function for Nonlocal Averaging.

Fig. 2. Rectangular Panel in Example and Finite Element Meshes Used.

Fig. 3. Load-Displacement Curves of Panel Obtained with the Meshes Shown in

Fig. 2.

Fig. 4. Three-Point Bend Fracture Specimen, Meshes Used for Its Three

Different Sizes, and UnlaxialStress-Strain Curve.

Fig. 5. Nominal Stresses oN at Maximum Load Obtained with th2 Meshes in Fig. 5

for Three Specimen Sizes d, Compared to Test Data and to Optimum Fit of

Data by Size Effect Law.

Fig. 6. Fracture Process Zones in the Specimens Shown in Fig. 5.
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APPENDI C5

Nonlocal Continuum Damage,
Localization Instability and
Convergence

Zdanik P. Balant A recent nonlocal damage formulation, in which the spatially averaged quantity was

Prolessor of Civil Engineering, the energy dissipated due to strain-softening, is eztended to a more general form in

Mere. ASME which the strain remains local while any variable that controls strain-softening is
nonlocal. In contrast to the original imbricate nonlocal model for strain-softening,

Gilles Pijaudier-Cabot' the stresses which figure in the constitutive relation satisfy the differential equations
Graduate Research Assistant. of equilibrium and boundary conditions of the usual classical form, and no zero-

energy spurious modes of instability are encountered. However, the field operator
Center for Concrete and Geornaterials, for the present formulation is in general nonsymmetric, although not for the elastic

Northwestern University,
Tecn-2410. part of response. It is shown that the energy dissipation and damage cannot localize

Evanston, IL 60208 into regions of vanishing volume. The static strain-localization instability, whose
solution is reduced to an integral equation, is found to be controlled by the
characteristic length of the material introduced in the averaging rule. The calculated
static stability limits are close to those obtained in the previous nonlocal studies, as
well as to those obtained by the crack band model in which the continuum is treated
as local but the minimum size of the strain-softening region (localization region) is
prescribed as a localization limiter. Furthermore, the rate of convergence of static
finite-element solutions with nonlocal damage is studied and is found to be ,, a
power type, almost quadratric. A smooth weighting function in the averaging
operator is found to lead to a much better convergence than unsmooth functions.

Introduction

Prediction of damage and failure of brittle heterogeneous tions converge to this incorrect, physically meaningless, solu-
materials such as concrete or rock requires a mathematically tion as the mesh is refined.
correct and physically realistic description of the strain- To remedy the situation, one must introduce some form of a
softening behavior (Baiant, 1986; Mazars and Pijaudier- localization limiter (Baiant and Belytschko, 1987). Its simplest
Cabot 1986). Although it has been argued that strain- form is obtained by imposing a lower bound on the finite-
softening does not exist on the continuum level (Read and element size, as is done in the crack band model. As a better
Hegemier, 1984), the macroscopic result of distributed localization limiter which permits arbitrary mesh refinement,
microcracking or void growth is a behavior whose continuum one may adopt the nonlocal concept. Introduced into con-
description must incorporate strain-softening. Numerous at- tinuum mechanics long ago by Kr6ner (1967); Eringen (19721;
tempts to describe this type of behavior by local inelastic con- Krumhansl (1968) and others, this concept was recently suc-
tinuum theories such as plasticity or continuum damage cessfully applied to strain-softening (Baiant, et al., 1984).
mechanics have been unsatisfactory because the phenomenon However, the formulation, in which all the state variables
of strain localization caused by strain-softening cannot be cap- were nonlocal, turned out to be quite complicated. It required
tured objectively (Baiant, 1986). The principal fault of the additional boundary and interface conditions, led to a
local continuum models is that the energy dissipated at failure nonstandard form of the differential equations of
is incorrectly predicted to be zero, and the finite-element solu- equilibrium, and the finite-element implementation required

imbrication of the elements.
In the preceding study (Pijaudier-Cabot and Baiant, 1986)

,on Iee from Laboratoie de Mcanique er Technologie. Cachan. France. to be further expanded here. a new idea which turns out to
Contributed by the Applied Mechamcs Division for presentation a the bring considerable simplification was introduced. It was

Winter Afifuanl Meeting, Chicago. IL. November 28 to December 2. 1988, of
The American Society of Mechanical Engineers. shown that it suffices to consider as nonlocal only the strain-

Discussion on this paper should be addressed to the Editorial Department, softening damage, while the elastic behavior (including
ASME, United Engineering Center. 345 East 47th Street, New York, 10017, and unloading and reloading) should be treated as local. This for-
will be accepted until two months after final publicatiin of the paper itself in the mulation was shown to require no element imbrication and no
JouRNAL oF Amui M&cRiAMcs. Manuscript received by ASME Applied

Mechanis Division. March 9, 917; final revision. November 13. 1917. overlay with local continuum, which had to be previously used
Paper No. 8S-WA/APM-18. by Baiant, et al., (1984) in order to suppress certain periodic

Journal of Applied Mechanics JUNE 1988, Vol. 551287



zero-energy modes in the imbricate. fully nonlocal solutions. As the simplest form of the weighting function, one may
The purpose of :he present study is to show that, more consider a = I within a certain representative volume V.
generally, the key attribute of the noniocal formulation for -entered at points x. and a=0 outside of it. As 'he will ee.
strain-softening is that the strain as a kinematic variable however, a uniform weighting function over a finitc _",nain
should be defined as local, and to study various aspects yet does not yield the best convergence. A much better con-
unexplored, including: (I) Static strain-localization instabili- vergence on mesh refinement is obtained when function
tv; (2) Symmetry of the field operator: (3) Influence of a(x-s) decays smoothly with the distance from point x. A
various types of spatial averaging; (4) Convergence at mesh suitable form is the Gaussian (normal) distribution function.
refinement, previously used for nonlocal elasticity by Eringen (1972);

Before embarking on our analysis, it should be mentioned
that other forms of localization limiters are possible and a(x)=exp[-(klxl/I)J (4)
deserve to be studied. The oldest idea, proposed already by
L'Hermite (1952) in a study of concrete cracking due to in which we have, for one, two and three dimensions
shrinkage, is to introduce a dependence of the strength or yield ID: 1xI = x k = i2
limit on the strain gradient. In a general form, which may in-
volve introduction of the strain gradient into the yield func- 2D: lxI = (2 -. y')/ 2  k =2 (5)
tion, this idea has recently been developed by Floegl and Mang 2  2 .) /2 k ( .

(1981), Schreyer and Chen (1984) and Mang and Eberhards- 3D: lx1 = (x -- .z k =(6,_

teiner (1986). Introduction of higher-order gradients into the
differential equations of equilibrium or into the definition of x, y, . are the Cartesian coordinates.
strength was studied by Aifands (1984) and also by Baiant The expressions in equation (5) have been determined from

(1984) and Baiant and Belytschko (1987). As another ap- the condition that the integral of a(x) for an infinite body be

proach, Sander (1984) as well as Needleman (1987) showed equal for one dimension to the length I (line segment), for two

that the introduction of viscosity, whether real or artificial, dimensions to the area of a circle of diameter I. and for three

may act in certain problems as a localization limiter, although dimensions to the volume of a sphere of diameter 1.

this can be true only for a limited time period of response. The function in equation (4) decays so rapidly that for
points s whose distance from point x exceeds 21 one may set

Nonlocal Generalization of Continuum Damage a = 0. Calculation of V, (x) according to equation (3) is needed

Mechanics for the treatment of boundaries. Function a in general extends
beyond the boundaries of the body. The domain beyond the

The principal idea for the treatment of softening is that only boundary is simply deleted from integration, but the weighting
those variables which cause softening may be considered as function is scaled so that the integral of all effective weights
nonlocal while the model must reduce to a local one for the a' (x, 3) = a (s - x) / V, (x) over the body should be exactly I for
special case of elastic response, which also includes unloading any x. In numerical programming, the integrals in equations
and reloading. This condition can be satisfied by a nonlocal (2 and (3) are approximated as finite sums. The values of
formulation in which the strain, when used as a kinematic a' (x, s) are generated for all combinations of all integration
variable, is local. To implement his condition it is convenient, points of all elements in advance of the finite-element analysis.
albeit not necessary, to use continuum damage mechanics The programming of the averaging integral, which was
because in this theory the strain-softening is characterized by a demonstrated by Baiant, et al. (1987) in a study of cave-in of a
distinct single variable w, called damage. For the nonlocal tunnel due to compressive strain-softening for a nonlocal
generalization, we adopt the simple, scalar damage formula- finite-element system with up to 3248 unknowns, is easier
tion. although the same concept could be implemented in a when the integral in equation (2) extends over the entire body.
similar manner in the anisotropic damage models, derived, When a finite averaging domain is used, it is important to
e.g., by Mazars and Pijaudier-Cabot (1986) and Ladeveze closely match by finite elements the precise boundaries of this
(1983), which are more realistic. Various other constitutive domain, but this is difficult to implement (Saouridis, et al..
theories can also be generalized to such a noniocal form, par- 1987).
ticularly those which use fracturing strain or a degrading yield Length 1. called the characteristic length, represents a
limit. (Baiant, et al. 1987). Unimportant from the viewpoint material property and is of the same order of magnitude as the
of the type of localization studied here, plastic strains will be maximum size of material inhomogeneities. Length I has been
omited from the formulation; their inclusion, however, determined experimentally (Baiant and Pijaudier-Cabot,
would require no conceptual changes. I ,i7a) by comparing the responses of specimens in which the

As usual in continuum damage mechanics, we may in- damage (e.g., microcracking) remains distributed with the
troduce the relation between the strains e,, and the stresses ay responses of fracture specimens, in which damage localizes.
in the form (Lemaitre and Chaboche, 1985) For concrete, such experiments indicated that I is roughly

equal to 2.7-times the maximum aggregrate size.
- ( Length I can be determined also by micromechanics

in which Ck, are the elastic constants of the material and 0 is analysis. In a parallel study (Baiant, 1987), a local
the damage. We assume Q to be nonlocal, defined by spatial homogeneous elastic continuum, containing an array of grow-
averaging as follows ing circular cracks with periodic spacing I and quasi-periodic

crack sizes, was analyzed. It was shown that by applying the
- a(s - x)0( s)dV(s) (2) usual homogenization conditions, one obtains a nonlocal con-

V,(x ) V tinuum with local strain and a nonlocal cracking strain, for

in which which the weighting function is uniform and the
characteristics length is equal to crack spacing. For the case

V,(x)= ca(s-x)dV(s). (3) when the crack spacing is not constant but randomly
. Vdistributed, this indicates that one should superpose at each

Superimposed bar denotes the spatial averaging operator, x point a set of uniform weighting functions with various
and s are the coordinate vectors, V- volume of the body, and characteristics lengths 1. This, however, appears to be approx-
amgiven weighting function. Initially 0==0, and always imately equivalent to us, - a nonuniform weighting function.
0:5 0:5l, 05w:s . For a uniform weighting function, volume V. has a similar
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meaning as the representative volume in the statistical theory which causes the Jissipauon rate to be nonlocal le.g.. nonlocal
of heterogeneous materials. However, its size 1. is smaller than plastic-strain pach in piasticity with softening yield limit
that of the representative volume and is too small to obtain Baiant. et at.. l97'. the energy dissipation is prevented to
statistical averages of the microstructure. The representative iocalize into a vanishing volume.
volume in the statistical theory must be seve-ral times !arger.

The specific free energy pi, per unit volume (with o being the
material mass density) and the energy dissipation rate o may Differential Equation of Equilibrium and Boundary
be expressed as Conditions

Pik= I( -
2

) C~kEk'. (6) In the original formulation of the nonlocal continuum for

o= -8 (pk/St) = -0 (pc)/M]=flY strain-softening in which nonlocal strains i, are used (Baiant,
et al., 1984), the virtual work expression for a body of volumein which Y, called the damage energy release rate is V, and surface Sb must involve &!0 rather than &,

6W= (a j&J -f,6u,)dV- p:6u~dS (10)

The damage evolution is characterized in general by an "' '

equation of the type ca =f( ,,,,. An integrable special form of in which uj = displacement components in Cartesian coor-
the damage evolution law has been used in all computations; dinates x, (i= 1.2.3), and f, p, =distributed volume and sur-

~g ( Y) I (-1 + b( Y- Y,)]- (8) face forces. The fact that 5f. involves the spatial averaging
operator defined by equation (2) complicates the derivation of

in which b, n = positive material constants , >2, and the differential equation of equilibrium and boundary condi-
Y = local damage threshold. tions and yields a nonstandard form of these equations

Damage is assumed to grow only for loading. For unloading (Baiant, 1984).
or reloading, Wi=0. which means the response is elastic. The For the present nonlocal theory, c,, is local and so bi,, in
loading criterion and the nonlocal damage fl are defined as equation (10) must be replaced by 6e,. But then the variational
follows derivation of the differential equation of equilibrium and the

i f F(() = 0 and F(Ca) = 0, then W4., boundary conditions is the same as usual (Baiant and
(9) Pijaudier-Cabot, 1987). This shows that, as long as the strains

If F') <0, or if F(() = 0 and F( ) <0, then =0. f (9) are defined as local, the differential equations of equilibrium,as well as the boundary conditions or the interface conditions,

Function F(!) represents the loading function and is defined will have the standard form. This further means that the
Funatio wre he oadins afuton d ein eer finite-element discretization can be of the same type as for the

which is set to be equal to the maximum value of (a achieved usual, local continuum. Therefore we may conclude that the
up o te resnt Th intil vlu ofx Ca iszeo. hedamge key simplifying feature of a continuum model for damage is

upto the present. The initial value of x() is zero. The damage the use of a nonlocal continuum in which the strains are local.expression in equation (8) was found to approximate closely In other words, the continuum should not be fully, but only
the behavior of concrete, provided that different local damage par words, the t e ll ten
thresholds Y, are introduced for tension and compression partially nonlocal. It is also clear that if the strain is local then
(Mazars and Pijaudier-Cabot, 1986). the elastic behavior, including the behavior at unloading and

The formulation of the loading function automatically reloading, will be local.
satisfies the dissipation inequality. The density of the energy
dissipation rate due to damage is o=.QY, and since flt0, we One-Dimensional Strain-Localization Instability
have o:0.

In view of the use of a loading function, it might be more Consider for the sake of simplicity the one-dimensional
appealing to introduce some potential function, similar to problem of a bar loaded through two springs of spring cons-
plasticity. However, a formulation with a potential function tant C (Fig. I). This problem was used by Baiant t1976) to
has not yet been developed in the literature on continuum demonstrate the localization instability due to strain-softening
damage mechanics of concrete or geomaterials. and was recently solved exactly with a fully nonlocal theory

The fact that equation (I) uses nonlocal rather than local (Baiant and Zubelewicz, 1986). The length coordinate is x, the
damage, and that the unloading condition is stated in terms of
the nonlocal damage, represents all that is different from the
classical local damage theory.

The original formulation of the nonlocal damage theory in _
the previous study by Pijaudier-Cabot and Baiant (1986) used
a somewhat different definition of nonlocal damage. The I
averaged quantity was the damage energy release rate Y rather .

than the local damage, and so the nonlocal damage wis deter- i .,,
mined as Q=g( }). This original formulation can be regarded _,_-__ ______

as a simplified approximation of the present formulation. The
numerical results for these two different definitions of
nonlocal damage appear to be quite close.

The strains as well as a have at least a C,-continuity (i.e..
they could consist of Dirac delta functions). According to
equations (9) and (2) and the fact that o = Y%2. the dissipation
rate density is given by a spatial averaging integral over w.
Consequently, o must have at least a C, -continuity. This sim-
ple argument proves that the energy dissipation cannot " "
localize into a zone of zero volume, and numerical solutions

Fig. I Strain (fa and damage lb) localizatlon profiles in the bar center
confirm it. and at the boundary. Clc.,,ated for a one.dimensional bar critical and

In general, one could show that by introducing any variable postcritical strain and damage localization profiles (c. dl
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bar length is L, and the bar ends arex = 0 and x =L. The bar is ion of the strain-softening segment that does rot reach Zhe
initially in a state of uniform strain e, and stress a, with boundary is decided by inevitable random iluctuations it
uniform damage .2, =,. The initial state is in the strain- material strength along the bar.
softening range and satisfies the relation qn =(!- ,)Ee5 . If Now consider the alternative formulation previously pro-
the constitutive relation for damage is given in the form of posed by Pijaudier-Cabot and Baiant 11986), in which the
equation 1S), we have w,) = 1 -11 -b( ':.E - Y0)" averaged variable is Y rather than w. For small strain in-

We now consider a small deviation from the initial state crements, equation (2) can be approximated as
caused by incremental variation of the load at the bar ends. Q(x) = 0 -- f2y[Y(x) - YJ], with (w = a/i"!lo =iy in which
Let &e(x) =q(x) =incremental strain and 6a=r=iicremental Y,), 10o and eo are the values of Y. Q and e in the initial state.
stress. To maintain equilibrium, it is necessary that r=con- Linearization for small increments is then accomplished by
stant along the bar. The compatibility condition for fixed sup- writing
ports requires that I - x Eo 21(s))tdr. (14)""2r (X) = 2 +2((x--)o"(II) Y x=

Substituting this into the basic relation r= (I -fi)Er i(x). one
Taking the one-dimensional form of the constitutive law in obtains for 7(x) an equation identical to equation (13), in
equation (1) with the averaging according to equation (2) and which k = 2 Y fl y. An equation of the same form would be ob-
the loading criterion according to equation (9), we find tained for various other possible types of averaging. For

-L problems with nonuniform initial strain, however, different
For a(s-x)h(s)ds>O: aq + r types of averaging do not yield the same field equations.

-0 Equation (13) can be easily solved numerically. If we sub-
[ I -L divide the bar length into N equal element.s of length

- W - 0 \a(s-x)w(s)ds E(fo +7,(x)); (12) Ax=L/N, use for integration the trapezoidal rule, express 71'(x) o 4from equation (i1) and substitute it into equation (13), we

Otherwise: r= (1 - wo)E q (x) may approximate the resulting equation as follows

in which I' (x) L a(s-x)dx= effective averaging length for v

point x. For infinitely small increments 71(x), the equations K =0 with
can be simplified by incremental linearization. To this end, we
may introduce the linear approximation w (x) = o + w, (x), kx C
with w =3w./8e for w=wo. Substituting into equation (12), Kq= (I-wo)E& -- , (x (- x,)  ,. (15)
neglecting the quadratric term YI(x)ry(s), and subtracting the I'
equation a0 =E(I - Q0)e,, we can reduce equation (12) to the Subscripts i,j refer to centroids of elements number i or j, and
form /I = I if fLa(X 1-s)i 7(s)ds = .a(x,-x)Ax 2t 0; otherwise

kI=0. Equation (15) represents a system of homogeneous
r=(l - )E(x)-(---- < c(s-x)17(slds> (13) linear algebraic equations for 7j. The critical state occurs at

( o such e) for which det(K,)=0. The loading segment.
characterized by I, = 1. is of course unknown in advance, andwith k=Ee0, , . The symbol < >, which introduces the so it must be determined iteratively. To search for the critical

loading criterion, is defined as <x> =x if x>0 and other- state with the smallest c,, the values of E, were incremented in
wise <x> =0. For the special damage constitutive law in small loading steps and. for each -. the following algorithm
equation (8), we may evaluate , =Eew y, with w = was used:
b n !'Ee) - Y I- [I -b( Y- Y,)[-- .

Equation (13) has the torm of a linear integral equation of I In the first iteration, we assume that only one element
the second kind. However, the problem is not simply that of undergoes loading (the central element). In the subsequent
solving an integral equation, because equation (13) is an in- iterations, we increase the number of elements that undergo
tegral equation only for those x for which loading takes place. loading by one keither on the left or on the right), unless the
Outside the loading region, equation (12) reduces to the usual number of loading elements already equals .V. in which case
linear elastic differential equation for displacements and the we start a new loading step with a larger e0.
behavior is then local, elastic, and unaffected by the strain-
localization in another segment of the bar. If we find one solu-
tion such that there exist elastic segments of finite length at -. - -
both ends of the bar, then we can obtain another solution .,- .
simply by shifting the softening segment along with the soften- /
ing solution profile as a rigid body. This shift is arbitrary pro-
vided the entire original length of the softening region, along i
with a small neighborhood of points located just outside the _____... __-_,_-_____

softening zone, remains within the bar. Due to this fact, we ,. ,
can calculate the length of the softening region and the solu- -

tion profile through it by analyzing any bar of a shorter
lergth. provided the bar length ex-eeds the length of the
softening region. The actual boundary conditions and the
,;ompatibility condition may be disregarded in such analysis
and satisfied afterward. Obviously. one can have infinitely ....
many solutions. Arbitrary shifts of the softening region,
however, do not affect the overall response of the bar. The
length of the softening region and the solution profile through
it is nevertheless unique. The localization profiles terminating Fi. 2(a. 0) Comparison of localization profiles of strain and damagefor the damage and energy relese ra .. -9qing: (c. d) influene ofat the boundary points are different from the interior one and the characteristic length I a to damage localization profiles, and therequire a special -nalysis. For real materials, the actual loca. size of the softening zone
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2 For each assumed set of elements with loading, we ing zone is approximately h = 1.88 (at constant strain c,)). This

calculate the lowest eigenvalue X, of A,, and the corresponding result, which is close to that obtained before for wave pro-

eigenvector ,'. If the positive values of q,"' in this eigenvec- pagation problems (Pijaudier-Cabot and Baiant. 1986) has

tor do not agree with the assumed set of loading elements, we been exploited for measurement of the characteristic length
return to I and repeat the calculation for the same E, and a (Baiant and Pijaudier-Cabot, 1987a). It also lends simple

larger number of softening elements. If they agree but X, > 0, physical interpretation to the charactristic length, '.

we also return to I (after storing the X1-value) and commence Figure 3(a) shows the dependence of the critical value of the
the next load step with increased e0; otherwise (X, < 0) the tangent modulus E, on L/1 for various values of C: E, is
critical state eo = f has just been passed. In that case. we in- understood as the effective tangential modulus for further
terpolate with regard to the X, -value in the preceding loading loading (softening) and is evaluated on the basis of local
step, in order to estimate more closely the value of t 1 for damage (for nonlocal damage the value of E, cannot be defin-
which X, =0. Then we print this e,-value, calculate the cor- ed uniquely). Figure 3(b) shows the numerical results for
responding eigenvector i (l) and stop. dependence of the ductility ratio eo/e, on the ratio of the bar

length L to the characteristic length 1, for various values of the

Lack of Symmetry. As we can see from equation (15), the spring constant C (A = bar cross section = I in the calculation,

tangential stiffness matrix K,, is nonsymmetric (K,, ;d K,,). The ", = strain at peak stress).
nonsymmetry is inevitable for the present formulation and is Comparison with the previously given local solution

due to the loading condition, brought in through parameter 1,, (Baiant, 1976) is shown in Fig. 3(c). In a local formulation.
as well as to the variability of I,'. If 1, as well as I,' have the however, the ratio hiL needs to be fixed in advance, as is done

same values for all elements, K,, would be symmetric. Similar- in the crack band theory. In a nonlocal formulation, h is a

ly, the part of matrix K,, for which I, and 1j' are constant is solution obtained on the basis of nonlocal damage theory:
symmetric. Matrix KY also becomes symmetric for e., - 0 h=3(e0 )l where 3 is a coefficient, mildly depeihding on the

(elastic behavior). For small ea it is weakly nonsymmmetric. critical strain; for o = 3 x 10-3 we find J= 1.88. as shown in

The fact that K,, is nonsymmetric implies that the integral Fig. 2(d). We also see that the local and nonlocal solutions are

operator in equation (13) is nonsymmetric, too. which means very close to each other. However, such close agreement need

it is not self-adjoint. This further implies that a minimizing not extend to general three-dimensional situations with ir-

functional associated with equation (15) does not exist, regular damage zones.

By contrast, the operators and stiffness matrices for the Figure 3(c) compares the nonlocal solutions obtained for the

previously formulated imbricate nonlocal continuum (Baiant. present damage averaging and the previously used energy
et al., 1987) are symmetric. In fact, the requirement of sym- release rate averaging. The comparisons of solutions for

metry was shown to inevitably lead to the imbricate nonlocal various choices of the weighting function ct(x) are presented
model (Baiant, 1984). Convenient though the symmetry is for in Fig. 3(d). Both types of averaging .nd different weight

numerical solutions, this advantage is nevertheless more than functions yield rather close results.
offset by other disadvantages of the imbricate model, as
already mentioned.

Numerical Studies. Typical results of numerical solutions Energy Analysis of Localization Instabiity

of the strain-localization are plotted in Figs. 1-3. It is assumed Although a minimizing functional does not exist for the

that E=32000 MPa, b=20.5, Yo =8540x 10-6; these values present nonlocal theory, stability can be checked by

are based on certain measurements (Nazars and Pijaudier- calculating the incremental work A1W that needs to be done on

Cabot. 1986). 1=0.25 L. The solutions are calculated for the the bar to produce small strain variations 5e(.x) =,7ix). Thus

averaging of , as well as for the averaging of Y. and also for the stability condition is AW>0 for all 7(x) where

the uniform weighting function. The loading increment is .1W=6W-6"W. Since 6W=O if the initial state is an

r= -0.1 MPa. The number of elements along the bar is equilibrium state, the stability condition is 62 W>0. We have

.V= 75. , W='1/27(x)6rdX-'/:C6uL. Upon substituting for 67

The profile I (x) depends only on the critical state eo, Qo and according to equation (13), we get the stability condition in the

the boundary conditions. The strain-localization profile is form
symmetric if the localization region does not touch the boun-
dary points of the bar. One also can obtain solutions with
several waves as shown in Fig. l(c, d); these solutions,
however, could be reached only if the bar were prevented to
fail at smaller strains. Figure 2(a. b) shows that the present .4 - - - . _.
damage averaging formulation and the original energy averag- j -, -"--'- .,' £
ing formulation gives very close results. Note from the solu- .

tions that the damage is continuous but the slope of the , 6 I -

damage profile may be discontinuous at the boundary of the .

localization region. Also note that the values of the strain in-
crement can be negative within the loading (i.e., softening) ,
zone. This is not objectionable since the unloading is defined
on the basis of the increments of 0 rather than e. This proper- .- *. - .. -

ty, which is inevitable if the strains should be continuous and
is the physical reason for the lack of symmetry and self- -

adjointness of equation (13), is revealed by equation (15). .._ .......
The :haracteristtc length controls the width of the softening

zone. It also has a great effect on the smallest strain value eo at . ., ,.

which instability is possible. Figure 2(c) shows the damageprofiles for various values of 1. The relationship between the Pig. 3 Stability limits in arNms of critical tangential modulus as: ductfllI-
length of the softening zone and the characteristic length t s y (a); critical damage obtained from the damage and energy averaging

formulations as function ot the length of the bar (c1 influence of the

shown in Fig. 2(d), and we see that the length h of the soften- weighting function (a)
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6" W 71 W ((I -w )E7 (X a- " ... go 10" 0 '"" .......

subjct to the compatibility condition J(x)d 2/C=0. 0 , (16)

As expected, 62 W vanishes for the critical state, as indicated 0 50 1_0
by equation (13). From this, it follows that for e0 <er, -k , , ""' ""

62W>0, and for e0>ec, 62W<0. Numerical evaluations of - ,
equation (16) confirm it. Thus the bar is stable for eo < eand ' __,______

unstable for e0 > e0. - -.-.
Note again that the quadratic functional in equation (16) is , /a.-

not symmetric. This is due to the presence of operator < > 1 o 0,

as well as the variability of 1' (x). __.______"__'=_

100 -1.1 41

Convergence at Mesh Refinement 055o o z 0a4 o of j 0 ,

The chief problem with the local solutions for strain- ; '/ "'
softening has been their convergence to physically incorrect ! ,,
solutions with zero-energy dissipation and the consequent 0- ,-- 4"*'UI

spurious mesh sensitivity. For dynamic response, a rapid con- 0 2 4
V ,

vergence has already been numerically demonstrated by Fig. 4(a-C) Convergence of the strain localization profiles for various

Pijaudier-Cabot and Baiant (1986) but it still remains to ex. weighting functions; (d) convergence of the size of the softening zone.
amine convergence and determine how it is affected by the (s) convergence of the energy dissipated
choice of the weighting function and other factors. Rapid and
correct convergence is particularly important for strain-
localization problems since strain-localization may often W = AN-" +F+ , in which A. W. and m are certain con-
necessitate a very fine discretization in the damage zones. It is stants. For problems of linear elasticity, the convergence is
therefore important to capture strain-localization with the quadratic, i.e., m= 2. The value W. represents the limiting
smallest possible number of elements per representative length solution for N- a*, which may be considered as the exact solu-
of the material. tion. For nonlinear problems, the convergence is generally

We now consider the formulations with the averaging of slower than quadratic: i.e., m <2.
both the local damage w and the damage energy release rate Y. The values of W_, A and M have been identified by fitting

In numerical calculations, we compare the results for a with the formula for W the results on at least three different
uniform weight (a = I over the length 1), used in the initial meshes using Levenberg-Marquardt nonlinear optimization
work. with various nonuniform weights, such as the Gaussian subroutine.
distribution and the triangular function defined as Ibstead of the static localization problem studied here so
a(s) =(2/l) (I -(2/1)SIl) for IsI <112 and a(s) =0 far, the dynamic localization problem studied previously by
forlsl a1/2. In contrast to the original, fully nonlocal model Pijaudier-Cabot and Baiant (1986) has been analyzed
(Baiant, et al., 1984), the weighting function, used for the numerically. An initially stress-free bar is subjected for times
strain-softening only, need not satisfy specific stability condi- t>0 to constant outward velocities at both ends, which are
tions stated in terms of the Fourier transform by Baiant and such that the inward waves are elastic but reach strain-
Chang (1984). softening when they meet at the middle. Prior to softening, the

For each weighting function, the strain and damage inward waves are step functions but after softening a complex
localization profiles for various times were calculated, for the localization profile develops. For the local case, this problem
same bar as oefore, using different numbers, N, of constant- has been solved exactly (cf. Baiant, 1986), but for the
length, two-node finite elements. The number of elements per nonlocal case, a numerical solution is necessary. The results
characteristic length / ranged from 3 to 25. Figure 4(a-c) are plotted in Fig. 4(e) which shows that the convergence rate,
shows the convergence of the strain profiles for a bar initially as indicated by exponent m, ranges from m = 1.43 for the
uniformly strained up to e0 = 3 x 10- 3. We see that, for the uniform weight function to 1.79 for the Gaussian weight func-
uniform weight function, the convergence is relatively slow tion (W. =0.0003925). Moreover, the magnitude of error is
but improves drastically for the continuous weight functions, by far the smallest for the Gaussian weight function. We
especially for the smooth Gaussian distribution function. For therefore may conclude that this function should be preferred
this function, only a few elements (3 to 6) over the in practical applications.
characteristic length are required in order to determine with a Comparisons have also been made between the two types of
practically sufficient accuracy the failure due to unstable averaging used in this paper. The convergence was found to be
strain-softening. This is also corroborated by Fig. 4(c) which distinctly better for the averaging of the local damage a than
shows the dependence of the size of the softening zone on the of the local damage energy release rate Y.
number of finite elements. Evidently, a relatively crude mesh
suffices for good failure prediction if the Gaussian distribu. Conclusions
tion function is used. I The key feature of a simple nonlocal theory of strain-

Let us now explore numerically the rate of convergence of softening is that the strain should be local. This implies that
the energy W dissipated due to damage. The finite-element the elastic behavior, including unloading after strain-softening
solutions usually exhibit power-type convergence. This means as well as reloading, must be local. Nonlocal must be the
that for a large enough number, N, of elements the error variables that determine damage, the phenomenon responsible
decreases as a certain power of the finite-element size h. for strain-softening.
Therefore the values of W calculated for various meshes 2 Owing to the continuity properties introduced by the
should (in the asymptotic sense for h-0) vary as nonlocal concept, the energy dissipation due to damage can-
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APPENDIX D1

Softening Instability: Part I
-Localization Into a Planar Band
Distributed damage such as cracking in heterogeneous brittle materials may be ap-
proximately described by a strain-softening continuum. To make analytical solu-

Zdenik P. azant tions feasible, the continuum is assumed to be local but localization of Softening
strain into a region of vanishing volume is precluded by requiring that the softeningProfessor, region, assumed to be in a state of homogeneous strain, must have a certain

Department of Civil Engineering, minimum thickness which is a material property. Exact conditions of stability of anNorth~western UniverSit,--Evanston, IL 60208 initially uniform strain field against strain localization are obtained for the case of

Mem. ASME an infinite layer in which the strain localizes into an infinite planar band. First, ihe
problem is solved for small strain. Then a linearized incremental solution is obtained
taking into account geometrical nonfinearity of strain. The stability condition 4%
shown to depend on the ratio of the layer thickness to the softening band thickness.
It is found that if this ratio is not too large compared to l, the stare of homogeneous
strain may be stable well into the softening range. Part II of this study applies
Fshelby's theorem to determine the conditions of localization into ellipsoidal
regions in infinite space, and also solves localization into circular or spherical
regions in finite bodies.

Introduction
Distributed damage such as cracking or void nucleation and 1985, 1987; Belytschko et al., 1986). In some cases, strain-

growth may be macroscopically described by a constitutive softening apparently leads to chaos (Belytschko et al., 1986).
law for a continuum that exhibits strain-softening (Baiant, Generally, the dynamic strain-softening problems (for a loca!
1986). In the softening range, the matrix of incremental continuum) belong to the class of "ill-posed" initia.
moduli of the material is nor positive-definite. After boundary-value problems, which are well known and acceptec
Hadamard (1903) pointed out that such a condition implies an as realistic in other branches of physics (e.g.. Joseph et al..
imaginary wave speed, strain-softening has been considered an 1985, Joseph. 1986, Yoo, 1985). Therefore, there is nothing
unacceptable property for a continuum and some scholars fundamentally wrong with the concept of strain-softening
have argued that strain-softening simply does not exist (Read from the mathematical viewpoint.
and Hegernier, 1984: Sandler, 1984). From the physical viewpoint, however, strain-softening in a

The various mathematical arguments for the nonexistence classical local continuum is an unacceptable concept because
of strain-softening, however, overlooked one crucial ex- structures are predicted to fail with zero energy dissipation.
perimental fact pointed out in 1974 by Baiant (1986): A The reason is that the zone of softening damage often localizes
material in the strain-softening state also has available to it into a line or surface while the energy dissipation per unit
another matrix of incremental moduli which applies for volume is finite. This difficulty, however, may be overcome by
unloading and is positive-definite. This fact makes an essential introducing some form of localization limiters (Baiant and
difference. It causes that the material in a strain softening- Belvtschko, 1987)-mathematical formulations that prevent
state can propagate unloading waves, and that solutions to the strain-softening damage to localize into a region of zero
various dynamic and static problems with strain-softening volume. Among numerous possibilities, the limitation to
exist, even for the classical, local continuum. Some solutions localization may be best introduced by treating the softening
are unique, representing limits of finite-element discretiza- damage as nonlocal while the elastic behavior, including
tions, which converge quite rapidly (Baiant and Belytschko, unloading, is treated as local (Pijaudier-Cabot and Baiant,

1986; Baiant. Lin, and Pijaudier-Cabot. 1987: Baiant and
Pijaudier-Cabot. 1987). Physical justification of this nonlocal
formulation has been given on the basis of homogenization of

Contributed by the Applied Mechanics Division for presentation at the a quasi-periodic microcrack array tBaiant. 199'7). Other
Winter nnual Meeting, Csicago. IL. November 28 to December :. 1988. of possibilities are. e.g.. the use of train gradient or higher-order
itH AMERICAN SOCETY OF MECHANICAL E.NOcERS.
Discussion on this paper should be addressed to the Editorial Department. Jerivatives (or gradients) of the yield frunction in the con-

-SME. United Engineering Center. 345 East 47th Street, New York. N N stitutive equation ie.g.. Floegi and Mang, 1981: 'vang and
1001 . and will be accepted until two months after final publication of the paoer Eberhardsteiner, 1985: Schrever and Chen. 1986; Trian-
.tseif in the JOvItMAJ or APiED MECHANICS. Manuscript received by -SME

pop1ied Mechanics Division. March 13. 1987: tinr. revision. February 1. 1988. taiyilidis and Aifantis. 1986).
Papet No. 86-WAiAPM-34. In this paper we will seek analytical solutions to

Joumal of Applied Mechanics SEPTEMBER 1988. Vol. 551517



multidimensional localization. They appear to be possible cular regions. The solution for ellipsoidal regions will be based
with the well-known approach which uses the simplest and on the celebrated Eshelbvs theorem for etgenstrain in an ellip-
earliest type of localization limiter proposed in 1974 by Baiant soidai inclusion n an infinite elastic ioiid.
(1976) and later implemented in the finite-element crack band The present tudy (includin2 Fir: 1) %Ill Jeai only %%ith
model tBaiant and Cedolin, 1979. 1980: Baiant, 1982; Baiant stabilit. of euuiiibrium states. and not wit biturcations of :he
and Oh, 1983, 1984). Despite the presence of strain-softening, equilibrium path. As is known from Shanley's cclumn theory.
the constitutive equation is in this approach treated as local, such bifurcaions can occur at increasing load and do not
but the softening aamage is not allowed to localize into a necessarily coincide with the limit of stable equilibrium.
region whose size is less than a certain characteristic length I of Before embarking on our analysis, comments on several
the material. This length is determined empirically by fitting related aspects are in order. It has been widely believed that
test data and roughly corresponds to the size of the represen- softening is properly treated by fracture mechanics, in par-
tative volume used in statistical theory of heterogeneous ticular, by line-crack fracture models with a cohesive zone
materials (Kroner, 1967). For concrete, I is of the order of the characterized by a softening stress-displacement relation. One
maximum aggregate size. Although this approach is, admit- problem with this approach may be that the stress-
tedly, crude and does not permit resolving the distribution of displacement relation might not be unique and might depend
damage density throughout the softening region, it has given on the fracture specimen geometry. This is suggested by
some surprisingly good results for the overall structural nonlocal finite-element results as well as the difficulties in fit-
response. This was confirmed by comparisons with extensive ring test data for various specimen geometries on the basis of
fracture test data (Baiant and Oh, 1983; Baiant 1982, 1984) the same material properties. Another problem is that this ap-
and later also by comparisons with accurate nonlocal finite- proach is limited to single fractures or noninteracting multiole
element solutions (Baiant and Pijaudier-Cabot, 1987. Baiant, fractures, and becomes unobjective (with regard to the choice
Pijaudier-Cabot, and Pan, 1986; Baiant and Zubelewicz, of mesh) when multiple interacting cracks are present (Baiant.
1986; see the Appendix). 1986). The formulation could be made objective by imposing a

The method of analysis of strain-localization instability due certain minimum admissible spacing of cracks as a material
to softening and its thermodynamic basis were formulated in property, but this runs into difficulty when the interacting
1974 (Baiant, 1976) and the stability conditions for one- cracks are not parallel. (Line cracks with a fixed minimum
dimensional localization in a bar and flexural localization in a spacing h are, of course, macroscopically equivalent to
beam were derived. The equivalence to failure analysis on the distributed cracking if the cumulative cracking strain over
basis of fracture energy was also demonstrated (Baiant, distance h is made to be equal to the crack opening
1982). Several other studies reanalyzed the one-dimensional displacement.)
localization from other viewpoints yielding equivalent results
(e.g., Ottosen, 1986). Softening Band Within a Finite Layer or Infinite Solid

Rudnicki and Rice (1975) and Rice (1976) made important Let us analyze the stability of softening that is localized in
pioneering studies of localization into a planar band in an in- an infinite layer which is called the softening band (or localiza-
finite space. They focused their studies primarily on localiza- tion band) and forms inside an infinite layer of thickness L (L
tion caused by the geometricaily nonlinear effects of finite - h); see Fig. I. The minimum possible thickness h of the
strain before the peak of the stress-strain diagram (i.e., in the band is assumed to be a material property, proportional to the
plastic hardening range), but they also obtained some critical characteristic length 1. The layer is initially in equilibrium
states for negative values of the plastic hardening modulus. under a uniform (homogeneous) state of strain 0- and stress a",
Rudnicki (1977) further analyzed, on the basis of Eshelby's assumed to be in the strain-softening range (Fig. 2). Latin
theorem, an infinite space that contains a weakened zone of lower case subscripts refer to Cartesian coordinates x (I = 1.
ellipsoidal shape, determined for localization into such a zone . 3) of material points in the initial tate. The :nitial
:he critical neutral equilibrium states of homogeneous stress
and strain, and demonstrated various cases of localization in-
;tabilities in the hardening as well as softening regime. (a) ,A " C)
Although the studies of Rudnicki and Rice represented an in- '1 6,,

portant advance, they did not actually address the stability 5 _.
conditions but were confined to neutral equilibriam condi- - H
tions for the critical state. They did not consider a general in- L - - 8 "-"j "u
cremental stress-strain relation but were limited to von Mises u
plasticity (Rudnicki and Rice 1975) or Drucker-Prager plastici-
ty (Rudnicki. 1977), in some cases enhanced with a vertex v0
hardening term. They also did not consider bodies of finite do go
dimensions, for which the size of the localization region usual- Fig. I Planar localization band in a layer
ly has a major influence on the critical state and. in the case of
planar localization bands, did not consider uiloading to occur
outside the localization band, which is important for finite
bodies. The present study attempts to take all these conditions
and effects into account.

The purpose of the present study is to obtain exact 0
analytical solutions for some multidimensional localization E Et
problems with softening, using the method introduced in 1974
by Baiant (1976. 1979). which is based on a local continuum
with an imposed !ower bound on the size / of the softening U t
region. In this paoer. wve will analyze localization of .;train into
a planar band. both without and with _geometrical nonlinearity '
or train and, in a subsequent companion paper. %,e will
anal% ze in a similar manner the localization of strain into ellip- £
sotdal regions. including the special case of spherical and cir- Fig. 2 Stresitst'ain diagram with softening and unloading
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equilibrium is disturbed by small incremental displacements Matrix Z is symmetric (Z., = Z,,) if and only it D.=.: = 0,:
6u, whose gradients 8u. are uniform both inside and outside and Dv,. = Dt,.. This is assured if D'.,,. as well as D, has a
the band (subscripts preceded by a comma denote derivatives). symmetric matrix. Our derivation. howe.er. is %alid in aeneral
The .alues of ,u. inside and outside the band are denoted as lor nonsymmetric Z or D',,,. The necessary stabilitv condi-
6u and 3u~, and are assumed to represent further loading tion may be stated according to equation (61 as follos%
anduiunloading, respectively, and so the increments 6u,., repre-
sent strain localization. We choose axis x. to be normal to the 5Z W= 5u'., Z,Ku' . >0 for any 6u: (9)
layer (Fig. I). -\s the boundary conditions, we assume that the
surface points of the layer are fixed during the incremental The expression in equation (9) is a quadratic form. If 5: tV is
deformation, i.e.. 8u, = Oat the surfaces x, = 0 and x, = L positive for all possible variations 6w., no change of he in-
of the layer. Assuming homogeneous strains inside and out- itial state can occur if no work is done on the body, and so the
side of the band. compatibility of displacements at the band initial state of uniform strain is stable. On the other hand. if
surface requires that 62 W is negative for some variation 8u .z, the change of the in-

, =au[, =0, au, =&u[ =0 (1) itial state releases energy, which is ultimately dissipated asheat. thus increasing the entropy S of the system by AS =
h u (L -h)s6u., = 0 (i= 1,2,3). (2) - 6 WIT where T = absolute temperature. Hence. due to the

We assume that the incremental material properties are second law of thermodynamics, such a change of initial state
must happen spontaneously. Therefore, we must conclude

hatrie Iq that the intial state of homogeneous strain is unstable if 32 Wfor loading and unloading (Fig. 2). These two tensors may be
either prescribed by the given constitutive law directy as func- (or Z,,) ceases to be positive-definite. Positive-definiteness ofthe 3 x 3 matrix Z,, is a necessar condition of stability. (We
tions of El and possibly other state variables, or they may be te3x3mti qi eesr odto fsaiiy W
imions ind osbly. Theatter cse variaes, g.,for ntim e cannot claim equation t9) to be sufficient for stability since we
implied indirectly. The latter case occurs, e.g., for continuum have not analyzed all possible localization modes. However.
damage mechanics. The crucial fact is that D differs from changing > to < yields a sufficient condition for instability.)
D', and is always positive-definite, even if there is strain- Positive-definiteness of the 6 x 6 matrix Z = D -

softening. Noting that ,, = (u,. , -u .,)1/2 and D ,,,. - ' D,,, , -de)inite e D, th e [ 6 m atri c of i-
we may write the incremental stress-strain relations as follows Dz! (L - h) (where D, and D, are the 6 x 6 matrices of in-
(repetition of subscripts implies Einstein's summation rule) cremental moduli for lcading and unloading) implies stability.

However, the body can be stable even if Z" is not positive-
041, - D Se,.,o'i,,, -Dku"O, for loading (3) definite.

6 fo If the softening band is infinitely thin (h/L - 0), or the
m,,, or unloading. layer is infinitely thick (L, h - z), we have Z,, = D' and so

Stability of the initial equilibrium state may be decided on matrix Z loses positive-definiteness when the (3 x 3) matrix of
the basis of the work AW that must be done on the layer per D:,, ceases to be positive-definite. This condition, whose
unit area in the (x1, x)-plane in order to produce the in. special case for von Mises plasticity was obtained by Rudnicki
crements 6uj. This work. which represents the Helmholtz free and Rice (1975) and Rice (1976). indicates that instability may
energy under isothermal conditions and the total energy under occur right at the peak of the stress-strain diagram. However.
adiabatic conditions, may be expanded as . W = 6 W , 62 W for a continuum approximation of a heterogeneous material,
-... where 6W = first variation (first-order work done by for which h must be finite, the loss of stability can occur only

a' on 6u, ) and V) W = second variation (the second-order after the strain undergoes a finite .ncrement beyond the peak
work). If the initial state is an equilibrium state. 6W must of the stress-strain diagram. For L - h. the softenng band is
vanish. We. therefore, need to calculate only 6 IV. Using always stable.
equations (3). 14). and (I). as well as the relation 5u': = Strain-localization ii'stability in a uniaxialIy stressed Oar
-u . (L- h) h which follows from equation (2). we get represents a one-dimensional problem. It also may be ob-

h L-h tamed from :he present three-dimensional solution as the
- . u.special case for which ;he softening material is rncrementally

orthotronc. wuh D(... = E, t < 0) and Dv... = E., > 0) as
the only nonzero incremental moduli. Equations i) and (9)

h h then yield the stability condition presented in 1974 (Baiant.
-- (

8o ,). - Dj 2 u6. )6u.t (0) 1976)

E. h E, E >
It It - <----- or -- >. (10)W= E L-h h L-h8 : V = ( .. - D " D , ) 6 W .., 6 u f: ( 6 )

Lh This simple condition clearly illustrates that for finite L. h the

We may denote localization instability can occur only at a finite slope E...

h i.e.. some finite distance beyond the peak of the stress-strain
Z, = D -- D (7) diagram.

L-h If the end of the bar at x = L is not fixed but has an elastic
or support with spring constant C,. one may obtain the solution

by imagining the bar length to be augmented to length L . the
DD, D', D:.12 additional lengih L having the same stiffness as the spring;

i.e., L - L = C, E.,. Therefore. the stability condition isZ=[Z, = D':u:, D ... D3~: - E, E., < h, (L - h, %which yields the condition given
D,:. DI Dm before (Baiant. 1976).

The stability condition for a laxer %.hose surface points are
D"5:. D.. D".. ,upported by an tiastic foundation ,Fig. 31) ma be :reated

t simiiari\. by adding :o :he ;axer of :hicness L another
- D:::. D::. Dv... (8 layer of thicknes's L - L such 'hat its tiffness is equisalent

- .o the gtxen toundation modulus.
D~ip. ,., Dv. - The case % hen rhe outer iurtaces of the iaver are kept at
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VExtension to Geometrically Nonlinear Effects in Finite
0 Strain

Strain localization in an infinite planar band can be also
easilv olved e%-en wh~en ,he !eometricallv nonlinear effects are
.aken into account. The geometrical nonlinearity we consider
is due to finite strains or finite rotations, not co changes in 1h.

L h---geometrical coniiguration uf the structure. The deviations ou,
and 6e,, from the initial state, characterized by homogeneous
stresses a', are again considered to be infinitely small, and the/ / energy expression .1W that governs stability is second-order

C small. However, the contribution to 8-' W, which arises from
S tit the geometrically nonlinear finite-strain expression, is also

,"/ 7 7 / "/ / ///7 / / / second-order small, and so it must be included. This may be
Fig. 3 Layer with localization band and an elastic foundation done if the material stress increment 8% in the work expres-

sion is replaced by the mixed (first) Piola-Kirchhoff stress in-
crement 6r,,, which is referred to the initial state and is non-

constant load p, = ao n, during localization is equivalent to symmetric (Malvern, 1969). As is well known. 8r,, = 6T, -
adding a layer of inifinite thickness L' - L. Therefore, the a' 8u,., - ou u where 37,, = material increment of the
necessary stability condition is that the 3 x 3 matrix of D',, true (Cauchy) stress. Since neither 68.% nor 6, is invariant at
be positive-definite, i.e., no softening can occur. coordinate rotations, one must use in the incremental stress-

Another simple type of localization may be caused by strain relation the objective stress increment 8% (representing
softening in pure shear, Fig. 2(c). In this case, 6u1 = ;e 0, 6u., the objective stress rate times the increment of time); 8a,; is
= 8u . = 0, and D(11 : = G., D 2112 = G. are the shear symmetric.
moduli. According to equations (7) and (9), the necessary The relationship between 8a,, and 6-r, may be written
stability condition is (Baiant, 1971) in the general form

G, h 8,, = 6. - R,1 .,,, ,o6uk,,, = H,1,ku.,m 15)- .-- -. :-- < .(11).
G L-h

Consider now the limiting case of an infinite space. While in j km n,,, 16)

a layer an infinitely long softening band must be parallel to the where we substituted ,, = Djk,bUk.,. Coefficients R,,,
layer surface, for an infinite space, the softening band can are certain constants which take into account the geometrical
have any orientation. Since L - o, we have Z,, = Dliz, arl if nonlinearity of finite strain. The values of R k,,, # are dif-
the band is normal to axis x,, stability requires that 6z W = ferent for various possible choices of the objective stress rate
8u' 2D, 2 .uj.2h/2 = positive-definite. To generalize this condi- and the associated type of the finite-strain tensor. The expres-
tion to a band of arbitrary orientation, we may carry out an sions which are admissible according to the requirements of
arbitrary rotation transformation of coordinates from xi to x. tensorial invariance and objectivity are (Baiant 1971)
The transformation relations are xi = c,,x" where c,, are the R _=-- a(0 _a 40- d.i80 + 1
direction cosines of the old coordinate base vectors in the new R 1 W' 'S,, - 4,, q p, (17)
coordinates. According to the rules of transformation of ten-
sors, we now have 26-'W = h(CkC2,6 ,) (C. c,qcD~pi) where a can be an arbitrary constant. The case a = 0 cor-
(C::, C~8 ) where the primes refer to the new coordinates x;. responds to Truesdell's objective stress rate and Green's
Noting that c,,c,, = 8 kq. c,,c., = 8,,,. we obtain (Lagrangian) finite-strain tensor: the case ,a = 1,-4 to the

finite-strain theory of Biot: the case cc = 1, 2 to the Jaumann's
26 W=h6aD", a,, with 5a, =c,, 6 uc ,c:. (12) objective stress rate and the finite strain theory of Suthwell.

Biezeno-Henckv. and Neuber (and to the logarithmic strain);
For arbitrary rotations. ba, can have any values. Thus the 6 and the case ce = 3, 4 to Cotter-Rivlin's convected stress rate

6 matrix of moduli D.,, and also D, k,,, must be positive- (see, equations (14a), (I5), (17a., and (22) in Baiant. 1971). In
definite in order to insure that the strain cannot localize into general, a can be any real number. For each different a-value.
an infinite planar band of any orientation. The same require- however, different values of incremental moduli D,,, must be
ment was stated by Hadamard (1903), who derived it from the used so as to obtain physically equivalent results; generally [cf.
condition that the wave speed would not become imaginary. Baiant, 1971. equation (19)1
Hadamard's analysis, however, implied that D" = D'.

Finally. consider another case of boundary conditions: The D = 6](70 * . -. 6. ,). (18)
case when the plane surfaces of an infinite layer slide freely Cf (6:0 -6 o ,8 ,
over rigid bodies during the localization. The boundary condi- From equation (5), in which 8a, must now be replaced by
tions at x, = 0 and x, = L now are ba. = 8 a:3 = 0. Similar 8r.,, the necessary stability condition is
to equation (6), we now have 262 W= hbr,:u., - (L - h)8"rt ut.,

6: W= -- (DI.. - hh ...)8u(.8u . -D':(8N!IcuI = h(87 ,-6,)u! .(t',,?8u>. -H,,u . )6u .

= hgu:.Z., 6u.. > 0 for any 8u:., (19)- N,13u1  - 28)N, 3 8)u, ) (13)
in which

in which ,,,,. 5N, 1, 6N,. are homogeneously distributed in-
plane incremental normal and shear force resultants aver the -

.0oie 'hickness or -he laver. O~erall ecuilibrium now requres Z .- H". -

• hat i.v = i., = iV. = 0. Hence. the necessary condition
or tabilit% against localization is v r L

L - h L-h ,
D'- .... . OD... >0. 4.. - - 141 In particular. if we use the Lagrangian (Green's) finite strain
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which is associated with Truesdell's objective stress rate (a = dignificant except if the localization occurs immediately after
0). we have the peak point of the stress-strain diagram (Fie. 2). Then the

Z -D' - L values of the strains at !oca ization instability obtained by
D4 D - --.IJ . ,1l) geometrically nonlinear and linear analyses cannot Jitter

--- _-,--_ "T"" hiniticantly since they must both be close to ihe peak point o1'
If .e use Jaumann*N objective stress rate (a = 2). we have the stress-strain diagram. For the posicritical large deforma-

tions. however, geometrical nonlinearity is no doubt alwas
Z, = D': - D. important.

L Conclusions
2IL -h) - r ). (22) The condition of stability of a layer against localization of

strain into a band reduces to the condition of positive-
It must be emphasized that the conditions of positive- definiteness of a certain matrix which represents a weighted
definiteness of matrix [ZJ for various possible values of as are average of the matrices of loading and unloading moduli of
all physically equivalent [even though for each different a- the material. The weight of the loading (softening) moduli in-
value the incremental moduli D:,2 and D, 2 are different, as creases with the ratio of the band thickness to the layer
dictated by equation (18)1. This fact often has been forgotten. thickness. If this ratio tends to zero (infinite space), the in-
The use of various types of objective stress rates often has stability is determined solely by the loading moduli and occurs
been discussed in the literature on the basis of some imagined as soon as this matrix ceases to be positive-definite. When the
numerical convenience, and the fact that the incremental band thickness is finite, instability does not occur until the in-
moduli cannot be the same for different objective stress rates itial strain exceeds the strain at peak stress by a finite amount.
has been overlooked (despite the analysis in Baiant, 1971). Geometrical nonlinearity of strain has a significant effect only
These practices.' widespread in the finite-element literature, for a very small band-to-layer thickness ratio, and unstable
are of course incorrect. localization then occurs near the peak stress state.

As for the identification of the incremental moduli from test Extension to localization that is not unidirectional and
data, it can be done only in reference to a certain chosen ob- numerical examples are relegated to a subsequent companion
;ective stress rate. Different values of the moduli must result paper.
"or different choices although the results are equivalent
:,hysically (see. Baiant. 1971).
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APPENDIX 02

Softening Instability:
Part Il-Localization Into
Ellipsoidal Regions

Zdenek P. Baant Extending the preceding study of exact solutions for finite-size strain-softening
regions in layers and infinite space, evact solution of localization instability is ob-

Protessor. tained for the localization of strain into an ellipsoidal region in an infinite solid. The
Department at Civil Engineering, solution exploits Eshelby's theorem for eigenstrains in elliptical inclusions in an in-

Northwestern Universi, finite elastic solid. The special cases of localization of strain into a spherical regionEvanston, IL 60208
Mem. ASME in three dimensions and into a circular region in two dimensions are further solved

for finite solids-spheres in 3D and circles in 2D. The solutions show that even if the
body is infinite the localization into finite regions of such shapes cannot take place
at the start of strain-softening (a state corresponding to the peak of the stress-strain
diagram) but at a finite strain-softening slope. If the size of the body relative to the
size of the softening region is decreased and the boundary is restrained,
homogeneous strain-softening remains stable into a larger strain. The results also
can be used as checks for finite element programs for strain-softening. The present
solutions determine only stability of equilibration states but not bifurcations of the
equilibrium path.

Introduction
The strain-localization solutions in the preceding paper (Ba- is characterized by elastic moduli matrix Du. We imagine fit-

iant, 1987) deal with unidirectional localization of strain into ting and glueing into this hole an ellipsoidal plug of the same
an infinite planar band. If the body is finite, localization into material, Fig. 1(a), which must first be deformed by uniform
such a band does not represent an exact solution because the strain eO (the eigenstrain) in order to fit into the hole perfectly
boundary conditions cannot be satisfied. In this paper, we will (note that a uniform strain changes an ellipsoid into another
seek exact solutions for multidirectional localization due to ellipsoid). Then the strain in the plug is unfrozen, which
strain-softening in finite regions. In particular, we will study causes the plug to deform with the surrounding medium to at-
localization into ellipsoidal regions, including the special cases tain a new equilibrium state. The famous discovery of Eshelby
of a spherical region in three dimensions and a circular region (1957) was that if the plug is ellipsoidal and the elastic medium
in two dimensions. All definitions and notations from the is homogeneous and infinite, the strain increment el in the
preceding paper (Ba.ant, 1987, Part I) are retained, plug which occurs during this deformation is uniform and is

expressed as

Softening Ellipsoidal Region in Infinite Solid E4 = SfikE,. (1)

This type of strain-localization instability can be solved by S are components of a fourth-rank tensor which depend
application of Eshelby's (1957) theorem for ellipsoidal inclu- olky are op s n a, o f tensric h epe
sions with uniform eigenstrain. Consider an ellipsoidal hole, only on the ratios a1 /a3 and aa, of the principal axes of the
Fig. 1(a), in a homogeneous infinite medium that is elastic and ellipsoid and, and for the special case of isotropic materials,

on Poisson ratio v,; see, e.g., Mura (1982) and Christensen
(1979). Due to symmetry of eo and e', S,,, = Sj,&m

but in general So,, d Sb,,,. Coefficients S,,, are. in general.
expressed by elliptic integrals; see also Mura (1982). Extension

Contributed by the Applied Mechanics Division for presentation at the of Eshelby's theorem to generally anisotropic materials was
Winter Annual Meeting. Chicago, IL. November 28 to December 2. 1988. of later accomplished at Northwestern University by Kinoshita
THE NNME ICAN SoctErY OF 4ECHAicCAL EGoN.EEits. and Mura (1971) and Lin and Mura (1973).

Discussion on this paper should be addressed to the Editonal Department. It will be convenient to rewrite equation (1) in a matrix form
ASME. Lnited Engineering Center, 345 East 47th Street. New York. N.Y.
10017 , and will be accepted until two months .fter final publication of the paper
Itself ;n the lOvtNA. or APPLED MECHA4tIC. Manuscrtpt received by ASME f e =QQ, °  (2)
Applied Mechanics Division, March I. 1987; revision. February 1. 1988.
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fe Stl SIIZZ S1133  Stll S1123  S1.131 1 111

e S-i S,,:: S2.3 3  S.1_ S ,... S: 31

t13  S3311  51322 S1331  S,3, S333 $, 33
I" = " .. . ..................... 1 . ( 3 )
--- ---- - - --- - - - -- - - ----------- - (3I I2SI 2 5 .S1- 2SZ33I 2S.2 2Snn " 33

t 2 e,3 2 3 1 2 '3 _2" 25 333 2 S ,21, 2 5 ,3 3 2 331 230

..2eeI I U
2 S3il 2322 2S3133 2 S3112 25 3 2s,,, ,1

in which e x (e, u, c2, E33, 2E12, 2c. 3 , 2e3,) r and superscript T Spr/. Stresses 6bo in reality exist only on the outside of the ellip-
denotes the transpose of a matrix. soid surface.

For isotropic materials, the only nonzero elements of matrix Equilibrium requires that 6p, = 6pf - 6pi. The first-order
Q are those between the dashed lines marked in equation (3), work 6W done by al must vanish if the initial state is an
which is the same as for the stiffness matrix. The factors 2 in equilibrium state. The second-order work done by 6pi may be
matrix Q. in equation (3) are due to the fact that the column calculated as
matrix of strains is (6x 1) rather than (9x 1) and, therefore,
must involve shear angles 2e12, 2e 2 and 2e3, rather than ten- 6' W= ! 2"2" p 5u~dS
sorial shear strain components eI2,e3 and c3,, or else Or s2
where o7 = ((1, ', 0'33 ( 12, a,3, a3I) would not be a correct
work expression. (The work expression %iie,, as well as the ='2" 8s dS--jj 6pfbu~dS
sum implied in equation (1) for each fixed ij, has 9 terms in
the sum, not 6.) For example, writing out the terms of equa- I I1 "
tion (1) we have 2- s  'iudS njbu dS (8)
Efi .+(St 12 c 1 S z1242) + "" where S = surface of the softening ellipsoidal region. Note

+ S 112(2) . (4) that bof, are not the actual stresses in the solid but merely serve
while the factors 2 arise as follows the purpose of characterizing the surface tractions bpf. Apply-
2je~ .ing Gauss' integral theorem and exploiting the symmetry of

12+ = 2. +S 233e33 + (StIIze 2 +SIIZIeC 1 ) tensors 86a and bol,-, we further obtain
+ (S , A + S1 343e2) ]- =_ I I

.... (2St1 )f3 + (2S12I2)2e?2

+ (2, 1m)2e + .. • (5)
The stress in the ellipsoidal plug, a' (which is uniform), may , T(6ai -6j)--(u- 1. dV

be expressed according to Hooke's law as

D . (e - (6 ) =6 e -a c )r1 e d V  (9 )

After substituting e' -QI'l, according to equation (2), we = V

get a' = D,(el-Q.-Y)or

e = D"(I -QU')el(7)
where I is a unit 6 x 6 matrix. The surface tractions that the (ae
ellipsoidal plug exerts upon the surrounding infinite medium, oiuq bore insertion
Fig. I(a), are pi = o nj, in which nj denotes the components -., final eouilibriu

of a unit normal n of the ellipsoidal surface (pointed from the e r
ellipsoid outward). // O. n1 ~

Consider now infinitesimal variations Su, 5e. ir from the
initial equilibrium state of uniform strain el in an infinite
homogeneous anisotropic solid (without any hole). The
matrices of incremental elastic moduli corresponding to eo are
D, for further loading and D,, for unloading, D,, being
positive-definite. We imagine that the initial equilibrium state
is disturbed by applying surface tractions 6p, o,, the surface (c)
of the ellipsoid with axes at, a2, a3, Fig. l(b). We expect bpi to
produce loading inside the ellipsoid and unloading outside.
We try to calculate the displacements 6u produced by trac- (b)
tions 6p, at all loading points on the ellipsoid surface.

Let Sc?, Sul be the strain and displacement variations pro-
duced (by tractions bpi) in the ellipsoid, and denote the net / -
tractions acting on the softening ellipsoid as 6pj, and those on / /
the rest of the infinite body, i.e., on the exterior of the ellip-
soid, as r6p,. As for the distributions of 6p, and 6pf over the .' :
ellipsoid surface, we assume them to be such that 6p' = .-6-ci ;'. .-A
and i p, = be.n,, where *,, and 6e, are arbitrary constants-.
Sr, is the stress within the softening ellipsoidal region, which
is uniform (and represents an equilibrium *ield), and W;, is a Fig. 1(a) Ellipsoidal plug (inclusion) Inslrted into infinito elastic solid,
fictitious uniform stress in this region which would equilibrate and (b) Iocalizatlon of strain Into an *111091t region
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where V - volume of the softening ellipsoidal region, and () (b) (c)
subscripts preceded by a comma denote partial derivatives. 1p- 602-6~p
We changed here to matrix notation and also recognized that , , """

(b'- buj ,) =6e~. Now we may substitutea

or ~40 =." = eD a , (10) r -

or r  D, (assuming Dr - D,). According to equation
(7), we also have, as a key step (d)

6e = DU 0 - Q"6. I) -- ..- "ee' 6e,

In contrast to our previous consideration of the elastic eilip- 7soidal plug made of the same elastic material, equations
(2)-(7), the sole meaning of 6a, now is to characterize the trac-
tions 6p acting on the ellipsoidal surface of the infinite (e)
medium lying outside the ellipsoid. Noting that the integrand(e
in equation (9) is constant, we thus obtain

52w= -- ' Zt" Z V k= I 6, ', V (12)

,a which Z denotes the following 6 x 6 matrix _-,

Z = Dt + D,(Q.-'I - 1). (13) v

Equation (12) defines a quadratic form. If the initial 6,
uniform strain t0 is such that the associated D, and D, give
62 W>O for all possible Sec, then no localization in an ellip-
soidal region can begin from the initial state of uniform strain
to spontaneously, i.e., without applying loads 6p. If, however, Fig. 2 Localization of strain into spherical and circular regions
6 W is negative for some 8ef,, the localization leads to a release
of energy which is first manifested as a kinetic energy and is face energy) in the energy criterion of stability, same as in
ultimately dissipated as heat. Such a localization obviously in- fracture mechanics. In this study, though, we take the view
creases entropy of the system, and so it will occur, as required that, due to material heterogeneity, it makes no sense to apply
by the second law of thermodynamics. Therefore, the a continuum analysis to localization regions whose width is
necessary condition of stability of a uniform strain field in an less than a certain length h proportional to the maximum size
infinite solid is that matrix Z given by equation (13) must be of material inhomogeneities.
positive-definite.

The expressions for Eshelby's coefficients Sjk,,, from which
matrix Q, is formed (see, e.g., Mura, 1982) depend on the Spherical Softening Region in a Sphere or Infinite Solid
ratios a, /a3, a2/a3 of the axes of the ellipsoidal localization
region. They also depend on the ratios of the unloading Localization in a spherical region is a special case of the
moduli D,,ikm. If, e.g., the unloading behavior is assumed to be preceding solution for ellipsoidal regions. However, the solu-
isotropic, they depend on the unloading Poisson ratio P1. tion may now be easily obtained even when the solid is finite.
Matrix D. is determined by v, and unloading Young's Consider a spherical hole of radius a inside a sphere of radius
modulus E. If, just for the sake of illustration, the loading R, (Fig. 2(a)). We assume polar symmetry of the deformation
behavior is assumed to be also isotropic, matrix D, is deter- field and restrict our attention to materials that are isotropic
mined by v, and E, (Poisson's ratio and Young's modulus for for unloading. As shown by Lame (1852) (see, e.g.,
loading). E, v, E., P., in turn. depend on the strain eQ at the Timoshenko and Goodier, 1970. p. 395), the elastic solution
start of localization. Since a division of Z by E, does not af- for the radial displacements and the radial normal stresses at a
fect positive-definiteness, only the ratio E,/E matters. Thus, point of radial coordinate r is
Z is a function of the form u = Ar+Dr- , a, = E. (A - 2.r) (15)

Z=E ( ._ a E_._ where A = A/(I-22.), D = D/(I +, P) E., = Young's
' a]3  modulus and Poisson's ratio of the sphere, and A, D = ar-

bitrary constants to be found from the boundary conditions.
= (a, 2 , e (14) We now consider a solid sphere of radius R which is initially

a a, 1 under uniform hydrostatic stress aO and strain to (ao = a0t/3,
s0 = E% /3), and seek the conditions for which the initial strain
may localize in an unstable manner into a spherical region of

Note that matrix Z, which decides the localization instabili- radius a. Such localization may be produced by applying on
ty, is independent of the size of the ellipsoidal localization the solid sphere at r=a radial outward tractions 6p (i.e.
region. This is the same conclusion as already made for a pressure) uniformly distributed over the spherical surface of
planar localization band in an infinite solid. No doubt, the size radius a, Fig. 2(a). To determine the work of 6p, we need to
of the localization ellipsoid would matter for finite-size solids, calculate the radial outward displacement 6u, at r =a. We will
same as it does for localization bands in layers. distinguish several types of boundary conditions on the outer

The previously obtained solution for a planar localization surface r- R.
band in an infinite solid must be a special case of the present
solution for an ellipsoid. Localization in line cracks also must (a) Outer Surface Kept Under Constant Load. As the
be obtained as a special case for a, - : however, the present boundary condition during localization, we assume that the
solution is not realistic for this case since energy dissipation initial radial pressure p, appliea at outer surface r = R is held
due to strain-softening is finite per unit volume and, therefore, constant, i.e.. 6P2 = 0. For 3a, = -6p, at r=a and 6a, =
vanishes for a crack (the volume of which is zero). For this -bpz - 0 at r = R, equation (1i) may be solved to yield A
case, it would be necessary to include the fracture energy (sur- a'pI/E(Ri -a'), )= AR /2, and from equation (15)
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* 6P, I a [R IV*R3 Circular Softening Region in a Planar Disk or Infinite
au , =[E 77a (10-..-R_6) PlateC Cu Eu (R3 

- aJ)

The inner spherical softening region of radius a, Fig. 2(c), is Working in two dimensions, consider a circular hole of
assumed to remain in a state of uniform hydrostatic stress and radius a inside a homogeneous isotropic circular disk of radius
strain, and its strain-softening properties to be isotropic, R Fig. 2(ab). We assume a plane-stress state and, then. accor-
characterized by E, and v,. Thus the strains for r<a are ding to Lame's solution, the radial displacement u and the
& =bul/a, the stresses are ba=3K, 8u,/a = C,6u with C, - radial normal stresses are (see, e.g., Fliigge, 1962. p. 37-13; or
3K,/a; K, = bulk modulus for further loading (softening); 3K, Timoshenko-Goodier, 1970, p. 70)
= E,/(l-2v,), with E, <0, K, <0, for softening. The surface I - V a~p, -Rlp. I -Vu R 2aZ(p, _p:)
tractions acting on the softening region, Fig. 2(c). are equal to u = R2 

- a r Eu (R2 
- a2 )r

C,3u1 where C, = 3K,/a. Hence, by equilibrium, the total

distributed traction at surface r=a must be 6, = C.u, + a R 2 a2 (pz - p) a-p - R
2
p.

Cbu1 and the work done by 6p is AW = 4ra(I/z6p6u=) az= + -a2
2ra(C. + C,)6u . Thus the necessary condition of stability
of the initial uniform strain e' in the solid sphere is 2Y. (p2RZ -pa')
C. + C, > 0, which yields the necessary condition for stability = (R- -a-) (23)

E, 2(1 -2&,)(R 3 -7 a) where pi and p2 are the pressures applied along the hole
E, 2(l - 2v,)a + (I -s- v )R3  perimeter and along the outer perimeter of the disk, respec-

Changing < to >, we obtain the sufficient condition for tively, and e, is the transverse strain in the plate, which is in-
strain-localization instability, dependent of r. Depending on the boundary conditions, we

distinguish three cases:
(b) Outer Surface Kept Fixed. In this case we assume

that during localization 6u=0 at r=R, and ba, = -6p, at (a) Outer Boundary Kept Under Constant Load. As the
ria. From equation (15), we may then solve D= -AR 3 and boundary condition during the strain localization instability,

we now assume that the initial radial pressure p2 applied at the
bpi I' 2R3  . - outer boundary r = R of the disk is held constant, i.e., 6pz = 0.

A = -- 2 + ) (18) Equation (22) then yields for 6u, = 6u at r = a, Fig. 2(b), therelation

which yields

E.az I 2R3 6u p =9p I a + RZ +a(
' =Cu. C = -a 3 ( (19) C. C E. R'-a)

The inner circular softening region of radius a, Fig. 2(c), is
The work done on the solid sphere by tractions 6p = C'6u, + assumed to remain in a uniform state of stress and strain.
C',bul applied at surface r-a is AW - 21a2 (C, + C,) 6U2 Thus the strains for r<a are &, = bu,/a. Assuming the plate
where C, = E,/(l - 2v,)a as before. Thus the necessary to be thin compared to radius a, we may assume the strain-
stability condition is C. + C, > 0, which can now be reduced" softening region to be also in a plane-stress state, and then 6,
to the condition = ba,(I - v,)/E,. Hence,

E, 1-2' '
a 2R . (20) o,,=C,'u,, C = I E, (25)Eu < R- 2,u +7 a l -P,

Assuming that 1E, I increases continuously after the peak of Now. we consider uniformly distributed outward tractions 6p
the stress-strain diagram as eo is increased, instability develops to be applied along the circle r=a on the solid disk (without
at the value a=ae, which minimizes 1E, I under the restriction the hole). By equilibrium, 6p = C6u, - C.6uj and the work
h/2 s a R wherehis the given minimum admissible size of done by 6p is .W = 2ra( '. 6p6u,) = ra(C' - C,)buj. Thus
the strain-softening region, representing a material property. the necessary condition of stability of the initial state of
For the case of prescribed pressure at the boundary r= R, we uniform strain is C - C, > 0. According to equations (24)
find from equation (17) that a, = R, which corresponds to E, and (25). the stability condition for plane stress becomes
= 0. So the sphere becomes unstable right at the start of E, I-v
strain-softening, i.e., no strain-softening can be observed < (thin plate). (26)
when the boundary is not fixed. For the case of a fixed E R2 +a-
(restrained) boundary at r=R, equation (20), one can verify 2 R a.
that Min IE, I is finite and occurs at ar = Min a=/h/2
(provided that , a 0). As another limiting case, we may consider a long cylinder of

For R/a-a, equation (20) yields the stability condition for radius R (and length >> R), in which case the softening
the case of infinite solid fixed at infinity, Fig. 2(e, I) region is forced to have along the cylinder axis the same strain

E, 2(1 -2,) e as the unloading region. However, the softening region is
< I + (21) not in a plane-strain state either. Assuming that the planes

normal to the cylinder axis remain plane, consider now that.
It is interesting that for R/a - a equation (17) yields the same unlike before, the axial stresses a. are nonzero. We must im-
condition, but this limit case is of questionable significance pose the equilibrium condition that the resultants of a' in the
since we found that a, - R when the boundary is not fixed, softening region and of ad in the unloading region cancel each
Note that the stability condition in equation (21) does not de- other, i.e...r(R 2 - a")c' - 'ra-',e. We leave it to a possible
pend on the radius a of the softening region: yet. unlike the user to work out the solution in detail and we now restrict our
softening in a layer in infinite solid, solved before, instability attention to the case a< < R. for which, according to equation
does not begin at the peak of stress-strain diagram (where (20) (6p: =0), we have 6e. = 2vY6pja'.(a- - R2)E. = 0 (for
E, =0) but begins only at a certain finite negative slope of the ra), while also 6a. = 0. Therefore, we may assume for the
stress-strain diagram. This slope can in fact be rather steep incremental deformation in the strain-softening region a state
( - E, - 2Eu for ,v, - ,, - 0). of plane strain. The solution may then be obtained simply by
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replacing E, with E; - E,/(l - v,), and v, with v, = v,/(I - 0.5
j,,) (the unloading region remains in plane stress in this case).
Equation (26) thus transforms to 0.4 - Vt  0.18 Elliptic cylinder

E, (I + Y,)(t - 2pf,) t 2 , 3 - -
'+<  

(long cylinder, a< <R). (27) Et 0.3 =0 u o.18R1 +a _E

u4 R0- -0.2

When aiR is not very small, the solution may be expected to
lie between equations (26) and (27). 0. 0.4

(b) Outer Boundary Kept Fixed. In this case, we have
during localization bu=0 at r=R and 6r, = -6pI at r = a. 0
Taking the variations of equations (22) at r = R and r = a, we 0.5 [
get V u 0y

g-et a26p-RZp, + I+', Ra2(6p1 - 6p) 0.4 V =0.18 O
E. R2 -a z  e. (R a 0 (28) 0.3 t .0 Z

I-V, a25p 1-R 2 p,  i.J a 2
Eu R1 - a2  u .- F-.

+ l+V. R 2 (bp1 -6p,.) (29) 0. La
E, (R2-aZ)a ,0 = 0.4

Eliminating Spj from these two equations, we get the relation 0
6P = Cbul with 0 1 2 3 4 5

= I- a (l-vu)a=+(l+v)RI] ln(a 1 /a2)Cu E.(R2-a2) [
Fig. 3(a, b)

4R2a )30)
(I - V.)R 2 +(I + ,)a2 I. (I0 .z

Pro mlate Spheroid

By the same reasoning is before, the necessary condition for 1.0P
the stability of the initial uniform strain e° is Cu + C, > 0 (a1 > a2 = a3 2 1)
where C, is again given by equation (25). This condition yields 0.8 u 0. Is

E , (I -,)(R I - a ) E t-- < R2' Et 0.6

, R + a2 +uR (R2-') ( R+ a2 U

-0.
(thin plate). (31)

0.2 0.4
For the case of a long cylinder of length > > R and with a

< < R. we may obtain the solution again by replacing E., P, 0
with E,, v;. This yields .2!

- Prolate Spheroid

E, (I i -,)(l -2p,)(R-a- )  1.0 (a, > a2  a3  )_er< I~ , U .o 0
U 2 ~4R2a- .

(l-v)R 2 +(I vja2  .

(long cylinder, a< < R). (32)

Instability develops at the value a a , which minimizes 0.4
IE, I under the restriction that h/2<a<R. For the case of 0
prescribed load at outer boundary, we find from equation (26) 0.2 I-
or (27) that a., = R, which corresponds to E, = 0. Thus the
disk becomes unstable right at the start of strain-softening, 0
i.e., no strain-softening can be observed. For the case of a fix- 0 1 2 3 4 5 6
ed (restrained) boundary at r=R, we find that, for a-R, lim
(- E,/E,,) = a (to verify it one needs to substitute a = R-6 n(a1 /a.)
and consider 6-0); consequently Min IE, I is finite, and it is Fig. 3(c. d)found to occur at ar,. = Min a = t/2.

foudtoccur a a, - Mtin (3) o- h/2Fig. 3 Tangential modulus Et at the limit of stability aghinst localiza.For R/a - ca, equation (31 ) or (32) yields the stability con- tion into ellipsoldal region as a function of ratio 11182 Of principal aXe.dition for the case of infinite plate fixed at infinity, Fig. 2(e,j) of ellipsoid
E, I - t,E, < - for thin plate (33)

Eu I Pv

E, (I + v,)(l - 2,,) yield the same conditions, but these limits are of questionable
-- for massive solid. (34) significance since we found that a, = R when the boundary is

,, 1+ -', not fixed. Note that the stability conditions in equations (33)
It is interesting that for R/a - (w equations (26) and (27) and (34) are independent of the size of the localization region.
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same as we found it for spherical localization regions and Matrix Z, equation (13), was evaluated by computer on the
layers. basis of Sikm taken from Mura (1982, equations (11.22) and

(11.29)). The smallest eigenvalue of matrix Z was calculated
Softening Annulus or Shell by a computer library subroutine. Iterative search by Newton

method was made to find the value of E,/EU for which the
Solution on the basis of equations (22) and (23) or (25) is smallest eigenvalue is zero and is about to become negative,

also possible for curved softening bands limited by two circles which indicates loss of positive-definiteness.
,an annulus) or by two spherical surfaces (a shell). In this case, The results are plotted in Figs. 3(a-d). For the infinite
the softening layer is not in a homogeneous state of strain and cylinder, Fig. 3(a,b), as a,/a2 increases, the localization in-
stress. The resulting formulas are more complicated. They stability occurs at smaller IEr/Eu I. The case a,/a, - 0 cor-
represent a transition between the solution for a softening cir- responds to an infinite planar band, and the results are iden-
cle (or cylinder, sphere) and a softening band. tical to those obtained before for this case. In particular, 1E, I

tends to 0 as a,/a 2 - o; i.e., instability occurs right at the
Numerical Examples and Discussion of Results peak of the stress-strain diagram.

Figure 3 shows some numerical results for localization of For the prolate spheroid, Fig. 3(c, d), the instability also oc-
strain into ellipsoidal domains in infinite space. The results curs at decreasing I E, /E. I as a, /a2 increases, but for lE, I -
were calculated for domains in the shape of infinitely long o, which corresponds to an infinite circular tube, a finite
elliptic cylinder (al -c and various a, l/a,) as well as prolate value of IE, I, depending on Poisson's ratio, is still required
spheroid (a, > a2 = a3 , various ratios al/a,). The material for instability. This limiting case is equivalent to two-
was assumed to be incrementally isotropic, with matrices D, dimensional localization in a circular region, equation (34).
and Du characterized by Young's moduli E, and E., and On the other hand, the case al/a, = 1. Fig. 3(c,d), is
Poisson ratios vu = 0.18 with various values of v,. The equivalent to localization into a spherical region, equation
assumption of incremental isotropy is here made for the sake (21).
of simplicity. In reality, the incremental moduli at strain- Figures 4(a-d) shows the plots for various incremental
softening must be expected to be anisotropic, except when the Poisson's ratios of lf,/E, I at incipient localization instability
initial state is a purely volumetric strain. A subsequent paper as a function of Ria for the following cases: (1) sphere,
(Ba~ant and Lin, 1987) gives numerical results for incremen- displacement fixed, equation (20); (2) localization in planar
tally anisotropic moduli corresponding to von Mises plasticity band in uniaxial extension (Equation (12) of Baiant, 1987,
and nonassociated Drucker-Prager plasticity with a negative R/a = L /); (3) localization in planar shear band (Ba.ant,
plastic modulus. 1987, equation (13), R a = L /h).
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We see from Fig. 4 that the value of E, at instability depends Conclusion
strongly on the relative size R(a) of the body as well as the The solutions to multidirectional localization problems with
Poisson's ratios. For infinite body size (R.'a - c), instability ellipsoidal, spherical and circular localization regions indicate
of planar bands occurs at E, = 0. i.e., at the peak of stress- that , seral a c i o iztinreon at e
strain diagram. The same happens under load-controlled con- that, in general, a loss o positive-definiteness or matrix D oi
ditions for the cases of spherical or circular regions with R/a tangential moduli for loading does not necessarily produce in-
- 1 (i.e., the smallest possible body size for which the body s erion requires positive-
remains at homogeneous strain). For R/a > I. the spherical definiteness of a certain weighted average of the incremental

or circular regions generally require a finite slope 1E, I to pro- moduli matrices D, and D. for loading and unloading. The

duce localization instability, provided the boundary is under weights depend on the relative size of the body. Not only for
prescribed displacement during the localization. finite but also for infinite bodies restrained at the boundary,

The results show that a localization instability in the form of unstable strain localization into finite-size ellipsoidal regions
a planar band always develops at a smaller IE, 1, and thus at a cannot take place for a certain range of nonpositive-definite
smaller initial strain, than the localization instability in the tangential moduli matrices. By contrast, unstable strain

form of an ellipsoidal softening region. That does not mean, localization into an infinitely long planar band of Finite

however, that the planar band would always occur in practice. tive-def in nosA planar localization band cannot accommodate the bound- positive-definiteness.
A plnarlocaizaionbandcanot acom odae th bond- The present results can be used to check the correctness of

ary conditions of a finite solid restrained on its boundary, and Te- esent .resuls can stocheckfte cr te o
a localization region similar to an ellipsoid may then bie ex- finiteelement programs for strain-softening.

pected to form. It is remarkable how slowly the slope 1E, I at Acknowledgment
instability decreases as a function of a /ta. The value of the
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AbsractdStrain-localization instabilities due to strain-softening which result from distributed
damage such as cracking in heterogeneous brittle materials are analysed. Attention is restricted to
the stability problem of equilibrium states. This problem is not equivalent to bifurcation of the
equilibrium path, which may occur before stability of equilibrium is lost. The continuum is local
but is enhanced by the localization limiter used in the crack band model, consisting of a lower
bound on the minimum dimension of the strain-localization region, which is regarded as a material
property. Presented are derivations of the critical state conditions for localization of initially uniform
strain into ellipsoidal domains within an infinite continuum and into a planar band within a layer
of finite thickness. These derivations are simpler than the previous Balant's derivations of the
general stability conditions for these localizations. A numerical parameter study of the critical states
is made for a broad range of material properties as well as various initial stress states and relative
sizes of the strain-softening region. The material is described by Drucker-Prager plasticity with
strain-softening that is caused by yield limit degradation. The flatter the ellipsoidal domain, or the
larger the size of the body (layer thickness), the smaller is found to be the strain-softening slope
magnitude at which the critical state is reached. A softening Drucker-Prager material is found to
be stable against planar-band localizations in infinite continuum for a certain range of softening
material parameters.

INTRODUCTION

Distributed damage such as cracking or void growth can be macroscopically described as
strain-softening, a behavior in which the stress declines at increasing strain, or more precisely
the matrix of incremental elastic moduli ceases to be positive definite. Strain-softening
causes the strain as well as the energy dissipation to localize. This localization represents a
stability problem.

For one-dimensional localization that describes the tensile or compressive failure of a
uniaxially stressed bar as well as the development of a planar localization band (e.g. crack
band) in infinite space, the stability conditions in terms of the strain-softening properties
of the material were derived in a 1974 report and a follow-up paper by Balant (1976). From
this stability analysis it transpired that, in the usual local continuum, the strain as well as
the energy dissipation localize into a region of zero volume. This implies the structure to
fail with a zero energy dissipation and the failure to occur right after the first onset of
localization. This would indicate every strain-softening state to be unstable and therefore
unobservable. In reality, structures of course fail with a finite energy dissipation and strain-
softening states in which the energy dissipation is not localized to a zero volume do exist,
as evidenced e.g. by measurements of the locations of sound emission sources.

The simplest remedy that eliminates this physically unrealistic situation is to impose a
lower bound on the minimum cross-section dimension of the strain-softening region. This
ad hoc measure was introduced by Batant (1976) in the finite element crack band model,
and was subsequently developed first for sudden softening (Baant and Cedolin, 1979,
1980) and later for gradual softening (Balhnt, 1982; Ba.ant and Oh, 1983). The last version
has been shown to be in good agreement with all the basic concrete fracture data, and to
exhibit the correct size effect, which is transitional between the size effect of 'istic limit
analysis and the size effect of linear elastic fracture mechanics. The crack band model has
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further been refined and implemented in some large finite element codes (de Borst, 1984;
de Borst and Nauta, 1984, 1985; Darwin, 1985; Baiant, 1986). It will therefore be assumed
in this study that strain-softening cannot localize into a region whose minimum cross-
section dimension is less than a certain characteristic length h, which is considered to be a
material property.

The strain localization instability was explained and analyzed in 1974 by Balant (1976)
for one-dimensional strain-softening in bars of infinite or finite length with rigid or elastic
supports, as well as for flexural softening in beams; see also Balant's (1986) review.
Rudnicki and Rice (1975) formulated the condition of localization into a planar band in
an infinite space (see also Rice, 1976). This condition turned out to be identical to the
conditions of uniqueness and of shear band formation, previously obtained by Hill (1962)
(see also Mandel, 1966 and Mroz, 1966). The study of Rudnicki and Rice (1975) was
focused primarily on localization instabilities caused by geometrically nonlinear effects of
strain, which they showed to be possible already before the peak of the stress-strain diagram
(i.e. in the plastic-hardening range). However, some critical states were also obtained for
negative values of the plastic-hardening modulus, i.e. in the softening range. These studies,
which were restricted to nonassociated Drucker-Prager plasticity, in some cases enhanced
with a vertex hardening term, did not consider bodies of finite dimensions for which the
size of the localization region usually has paramount influence on the critical state, and did
not generally treat unloading outside the localization band, which is essential for the
loss of stability in finite bodies. Subsequently, Rudnicki (1977) studied localization into
ellipsoidal regions in a uniformly stressed infinite space and showed examples of such
instabilities in the hardening as well as softening regime. This study was also limited to
nonassociated Drucker-Prager plasticity (without or with a vertex hardening term), and
dealt only with the critical state of neutral equilibrium while stability was not analyzed.

Recently Balant (1988a, b) formulated in a closed form the conditions of critical state
as well as stability for the localization of strain-softening into planar bands or ellipsoidal
regions. This study included formulation of the stability conditions for strain-softening
localization into a planar band that forms within a layer of finite thickness. These stability
conditions allowed for completely general material properties characterized by arbitrary
tensors of incremental moduli for loading and unloading (with general anisotropy), which
makes it possible to determine the important effect of the type of constitutive law on these
instabilities. The numerical examples, however, dealt only with the special case of isotropic
incremental elastic moduli tensors, which is simple to treat but of course not too realistic.

Our objective will be to apply these previously derived stability conditions assuming
more realistic, incrementally anisotropic material properties based on Drucker-Prager plas-
ticity (Fung, 1965; Owen and Hinton, 1980; Chen, 1982). At the same time. we will present a
direct derivation of the conditions of critical state (stability limit) which is considerably
simpler than the previous derivation of the stability conditions. Compared to the work of
Rudnicki and Rice (1975) and Rice (1976), the present study as well as the preceding ones
by Baiant (1988a, b) extends the localization condition to arbitrary constitutive laws and
to bodies of finite dimensions for which unloading is important and the body size matters.

It needs to be emphasized that, as in Baant's (1988a, b) preceding study, the present
study deals only with the critical state of the loss of stability of equilibrium, and not with
bifurcation of the equilibrium path as the load is increased. The problems of stability loss
and bifurcation are not equivalent. For uniaxially stressed bars or planar localization bands,
the critical state for stability differs from the state of bifurcation (Baant, 1988c). More
detailed comments on this subject will be made later in this paper.

To avoid localization of energy dissipation into a region of zero volume, one generally
needs to introduce the so-called localization limiters (Baant and Belytschko, 1987). The
imposition of a lower bound on the size of this region, adopted in this study, is the simplest
but crudest localization limiter. Limitation of localization in general calls for adopting the
nonlocal continuum approach (Balant et al., 1984; Ba~ant, 1987). The latest form of this
approach, which is easily implemented in large finite element codes, is the nonlocal con-
tinuum with local strain (Baiant and Pijaudier-Cabot, 1987, 1988; Pijaudier-Cabot and
Balant, 1987; Balant and Lin, 1988). The nonloc-il approach, however, does not seem
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Fig. i. Ellipsoidal plug (inclusion) inserted into infinite elastic solid, and localization of strain into
an elliptic region.

amenable to closed-form expressions for the stability conditions and therefore will not be
pursued here.

Compared to the general nonlocal formulation, the use of a local continuum with the
simple imposition of a lower limit on the size of the localization zone, made in the crack
band model and adopted here, might seem too simplistic. The numerical results obtained
with this model have nevertheless been found to be rather close to the nonlocal solutions
(Baiant and Pijaudier-Cabot, 1988 ; Pijaudier-Cabot and Balant, 1987). This is a supporting
argument for the present approach.

CRITICAL STATE CONDITIONS FOR LOCALIZATION INTO ELLIPSOIDS

First we consider an ellipsoidal hole (Fig. l b) in an infinite homogeneous elastic
continuum characterized by the elastic moduli matrix D.. We imagine to fit and glue into
this hole an ellipsoidal plug made of the same material. To fit, the plug must first be
deformed by a uniform strain, c', called the eigenstrain (note that an ellipsoid can be
transformed to any other ellipsoid by uniform strain). The eigenstrain is then imagined
unfrozen, which causes the plug with ellipsoidal hole to undergo strain increment ae in
order to establish equilibrium with the surrounding infinite continuum. According to the
celebrated Eshelby's theorem (Eshelby, 1957; Christensen, 1979; Mura, 1982), the strain
ge in the plug is uniform and is expressed as

j = Sijk,.'M (I)

in which Slik, are the components of a fourth-rank tensor which depend only on the aspect
ratios al/a2 , a3/a2 of the principal axes of the ellipsoid, as well as on the elastic moduli.
Eshelby's coefficients Su, are generally calculated as elliptic integrals (Mura, 1982). Always,
Slik, = S],, = SU'k, but in general S,,k. :, Sk ,/. For generally anisotropic material prop-
erties, the expressions for coefficients Skjs were derived by Kinoshita and Mura (1971) and
Lina and Mura (1973).

For convenience we rewrite eqn (1) in a matrix form:

Ee I StllS1111 S 22  51133; S1112  51123 SIM, &.

6 2 S2211  S2222  S 33: S212 S.223 S223, 802

e33 S3311  S332 S33 3 S3312  S3323  S3331 633- - - (2)
-. "e, 2S12 1 1 2S1222  2S1233 I 2S12 12  2S,22 i 2S,231(2)

2413 2S2311 2S1322  2S2333 2S2312 12S2323 12S.331 ,

L~e,, 2Sln 2 S i ,, 2S3133
2S3112 2123 12S313 jj 2E 0.
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or

e= Q ,

in which s' and e€ ,.re the column matrices of the eigenstrains and the equilibrium strains
in the ellipsoidal region. These column matrices (with the factors 2) are defined in such a
manner that aras is the correct expression for work density; o = (a[ I, a22, a33, a12, 0,13 ,
a3,)

T = column matrix of stresses (superscript T denotes the transpose of a matrix). For
isotropic materials, the only nonzero elements of matrix Q of Eshelby's coefficients are
those between the dashed lines marked in eqn (2).

According to Hooke's law, the stress in the ellipsoidal plug, or, which is uniform, may
be expressed as a' = D,(e-o). Upon substituting s = Q;- IY [according to eqn (2)], we
obtain

'=D.(1- - )e (3)

in which I = unit 6 x 6 matrix.
Consider now that an infinite continuum (without any hole) is in an initial equilibrium

state of uniform initial strain a and uniform initial stress u balanced by loads applied at
infinity. We seek the condition under which the initial state loses stability in a mode in
which the strain localizes into an ellipsoidal region (Fig. I) without changing the prescribed
stresses (or the prescribed displacements) at infinity. If these variations can happen while
maintaining equilibrium, we have a state of neutral equilibrium which represents the limit
of stability, i.e. the critical state.

Due to localization, the strain and stress ir the infinite continuum outside the ellipsoidal
region becomes nonuniform, while according to Eshelby's theorem the stress and strain
inside the ellipsoidal region will remain uniform. The strains can become discontinuous
across the ellipsoidal surface, as shown in Fig. Id. On the other hand, the normal and shear
stress components acting on this surface must remain continuous in order to maintain
equilibrium (while the normal stresses parallel to the ellipsoidal surface need not be con-
tinuous). If the ellipsoidal region undergoes strain-softening, the outside undergoes unload-
ing and therefore behaves elastically. According to eqn (3), the stress variations immediately
outside the ellipsoidal region are 5ur = D.(1 -Q;') 6M in which D. must now be interpreted
as the matrix of elastic moduli for unloading, corresponding to the initial strain c. This
matrix is positive definite, and it is also isotropic if the material is isotropic. The uniform
stress variations inside the ellipsoidal region are 6o' = D, Ma€, in which D, is the matrix of
incremental elastic moduli for further loading, corresponding to the initial strain e. This
matrix is not positive definite if the initial state a is in the strain-softening range, and
generally it must be assumed to be anisotropic. Equilibrium of the ellipsoidal region with
its exterior is maintained if 6a' = 60a. From this we obtain the following conditions of
neutral equilibrium (i.e. critical state):

(D, - D.(I - Q.- ')] 6se = 0. (4)

It may be noted that for each point of ellipsoidal surface, at which the unit normal is n.
equilibrium requires only that- 6'n = 6&'n. However, due to the fact that this condition
must hold for various n, it is necessary that 6b' = 6a".

Equation (4) represents a system of six homogeneous linear algebraic equations for
the six components of J . A nonzero solution, which represents the strain lucalization
instability mode, is possible if and only if the determinant of this equation system vanishes.
i.e.

Det Z =0, with Z = D,-D.(1-Q;-). 5)

This is the same result as obtained previously in Bakant ( 1988b), in which it was further
shown that the initial state of uniform strain s in unstable if matrix Z is not positive definite,
and is stable (with regard to the presently assumed localization mode) if this matrix is
positive definite. This result was obtained (Ba.ant. 1988b) by analyzing the sign of the
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second-order work needed to produce an equilibrium localization increment. This is the
work that is done by the interfacial tractions applied on the ellipsoidal surface during an
equilibrium localization increment (this work can be shown to be equal to - T(AS), where
(AS)in is the increment of internally produced entropy of the body; see Balant 1988c).

The special case of the critical state condition in eqn (5) for associated or nonassociated
Drucker-Prager plasticity was previously derived by Rudnicki (1977).

CRITICAL STATE CONDITIONS FOR LOCALIZATION INTO PLANAR BAND

Consider now strain localization into an infinite planar band of thickness h that forms
inside an infinite layer of thickness L (L > h). We choose axis x, to be normal to the
layer (Fig. 2). The layer is assumed to be initially in equilibrium in a state of uniform
(homogeneous) strain E, and stress oij (the latin lower-case subscripts refer to Cartesian
coordinates xi, i = 1, 2, 3). We imagine the initial equilibrium state to be disturbed by
infinitesimal displacement variations 6u, whose gradients bu.j have the values 6uj and
5z4j inside and outside the band, representing further loading or unloading, respectively.
These variations are uniform within the band and also outside the band, with discontinuous
jump across the surface of the band. As the boundary conditions, we consider tha the
surface points of the layer are fixed during the incremental deformation, i.e. 5ui = 0 at the
surfaces x2 = 0 and x2 = L of the layer. The stress variations inside the band and outside
the band are:

c~a': = Dij. b'. = D'.,,, 6u',,, = (6)

bel, = D". e -Du, =D-2jj26u.2 (7)

in which again Dko,. and D~oj represent the incremental elastic moduli for further loading
and for unloading, corresponding to the initial strain ci. In writing eqns (6)-(7) we assume
that 6u54 = 6i.1 = 0, N.z 3 = NO. = 0. Without these conditions, there would be a slip
continuity between the inside and outside of the band.

Compatability of deformations over the thickness of the layer requires that
h6u',, +(L-h) 6uo., = 0 (j = 1,2: 3). Expressing 6u., from this equation and taking into
account the condition of equilibrium at the band surfaces, 6o, = 6a',i (i = 1, 2,3), we
obtained from eqns (6)-(7) the following condition of neutral equilibrium (critical state):

D12q 2 + ID 021 2) 6u.. 2 = 0. (8)

This represents a system of three homogeneous linear algebraic equations. A nonzero
solution exists if and only if

X2

+0,0 L0 (7

Fig. 2. Planar localization band in a layer.
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h
Det Zi= 0, with Zij = D'is2j + Lh Dij. (9)

This critical state condition is again the same as obtained previously by Baiant (1988a),
in which it was also proven (by analysis of the second-order work) that the states for which
the matrix Z4 is not positive definite are unstable, and the states for which it is positive
definite are stable with regard to localization into a planar band. A special case of eqn (9)
is the condition for uniaxial or shear localization instability derived in 1974 by Baant
(1976).

The special case of eqn (9) for nonassociated Drucker-Prager plasticity without or
with vertex hardening and for infinite space (for which L - D and unloading D' plays no
role) was obtained by Rudnicki and Rice (1975) and by Rudnicki (1977).

BASIC PROPERTIES OF THE CRITICAL STATES

The critical state conditions in eqns (5) and (9) were discussed in detail by Baiant
(1988a, b). Briefly, according to eqn (5) which refers to an infinite continuum, the critical
state condition for localization into an ellipsoidal region is independent of the region's size,
and depends only on the aspect ratios a,/a 2 and a3/a2 of the ellipsoid. By contrast, according
to eqn (9), which applies to a finite body, the critical state condition does depend on the
size of the localization region, in this case the thickness h of the band. The smaller the
thickness of the band, the more stringent is the stability condition, i.e. the smaller is the
magnitude of the strain-softening slope (tangent modulus) at which instability occurs. If
h -+ 0 were allowed, instability would always occur no later than at the peak stress point,
and so strain-softening could never be observed. The fact that it can be observed implies
that the thickness of the localization band, h, cannot be considered to be smaller than a
certain finite length. This length must be considered to be a material property. It is roughly
equal to the characteristic length I of the material.

It is now proper to comment on the difference from Hill's (1962) condition of bifur-
cation of the equilibrium path, D%,s2u .2 = 0. This equation coincides with Rudnicki and
Rice's (1975) condition and is obtained from eqn (8) with L,'h -+ 0. As a bifurcation
condition, however, this equation has been used [in contrast to eqn (8)] for a finite body of
any size. In that case there is no unloading in the body, same as for a layer of infinite
thickness. So the moduli D!sk,. may be assumed to apply everywhere, which means the
analysis can be made on the basis of a linear elastic body; see Hill's concept of a linear
comparison solid. It must be noted, however, that the eigenmode bus obtained from the
equation D' 1 2 6uJ.2 = 0 violates the boundary condition of fixed displacements at the layer
surface. Therefore, neutral equilibrium does not exist in the layer at the bifurcation state.
and the calculated eigenmode 6ut- cannot actually occur as an instability. This means that
the bifurcation must occur at increasing rather than constant boundary displacements. If
the boundary displacement increase is controlled, such a mode of deformation does not
represent stability loss, whose investigation is the objective of the present study. Rather,
the bifurcation state as well as the states immediately after the bifurcation are stable.

The foregoing discussion reflects the fact that one must distinguish between the con-
cepts of stable state and stable path, as shown in Balant's (1988c) study. It was proven (for
the special case of uniaxial stress) that after the bifurcation point, which occurs according
to Hill (1962) or Rudnicki and Rice (1975) at the peak stress state, the strain must begin
to localize if the material is deformed in an equilibrium manner and if the tangential moduli
vary continuously as the layer is loaded in a displacement-controlled fashion. However, it
was also shown that if a nonlocalized uniform post-peak state is somehow reached, this
state is stable if eqn (8) is satisfied. Such a state can be reached in an equilibrium loading
process if the tangential moduli decrease discontinuously during loading (or drop suddenly
due to heating or other effects). Even for continuously varying moduli, such a state can be
reached dynamically, or if certain temporary restraints are applied, then also statically.
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Whether the aforementioned distinction between the stability limit and the bifurcation
state exists also for finite ellipsoidal regions is not immediately clear. Further study is
planned.

The critical state conditions in eqns (5) and (9) were examined in the previous works
(Balant, 1988a, b) for the effect of material parameters. Consideration was limited to
incrementally isotropic tensors Djk,,. For the ellipsoidal localization regions, it was found
that the critical slope E of the stress-strain diagram (<0) at which instability occurs
decreases in magnitude as the ellipsoid becomes flatter, more elongated in the x, and x 3
directions, and becomes zero as the ellipsoid approaches an infinite band, i.e. for a, -- 0,
a3 -. no. Rather large ratios a1/a2 and a3/a2, however, are needed to make IJEfI small. For
example, for I E7I to become less than about 5% of the unloading slope E., the aspect ratios
aj/a 2 and a3/a2 need to exceed approximately 200. This is a surprisingly large value.

Such an elongated ellipsoidal region (whose thickness for concrete may not be less
than several times the aggregate size) often cannot be accommodated within a finite body
representing a typical concrete structure. This ellipsoidal region would have to be contained
within a larger region that is sufficiently remote from the surface of the body so that the
boundary conditions of infinite space around the ellipsoidal region would be approximately
applicable. Therefore, real structures should often be stable even for strain-softening slopes
whose magnitude is much larger than that predicted by the formula for the planar band
[eqn (9) and also Ba.ant, 1976] using a characteristic length of the same order of magnitude
as the maximum size of inhomogeneity in the material.

Equations (5) and (9) can be used to study the influence of material parameters on the
localization instabilities for more realistic constitutive laws, for which the tensor D,,km is
anisotropic. We will do so now for some plastic constitutive models.

PARAMETER STUDY FOR NONASSOCIATED DRUCKER-PRAGER PLASTICITY

The plastic stress-strain relations for isotropic materials have the form:

ds, = 2G(deo-dejI), dor' = 3K(de- deP) (10)

in %k ich G, K = shear and bulk elastic moduli, e = e3 = volumetric strain, e,, = E-
6cS' = deviatoric strains (6,j = Kronecker delta), o' = Ckk/ 3 = volumetric stress, si; = oo-
ijoa -- deviatoric stresses, and a,, ej = volumetric and deviatoric plastic strains. The
plastic strain increments are given by the flow rule:

= (I l)

in which dA is the plastic strain parameter and g is the plastic potential function. According
to the plasticity theory proposed by Drucker and Prager (see Fung, 1965; Chen, 1962), the
loading function and the plastic potential function are introduced as follows:

f(6, K) = f+ '(o)- = 0 (12)

g(a, K) = f+ (o)-c = 0 (13)

in which f - J (,2 = s,,) 1/" = stress intensity, J2 -stress deviator, K = plastic hardening
parameter, and 0, 0 = empirical material functions of the volumetric stress. As usual, we
introduce the notations:

d= t ,'

S=-, /= =-,(14)

in which H = plastic modulus, which is positive for hardening and negat;,e" for softening,
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fl' = internal friction coefficient, and P3 = dilatancy ratio. The formulation satisfies the
normality rule if9 - f, which means that 0 = 0/ (and also P3 = ft'). In this case, the material
is said to be associated, and otherwise nonassociated. H, P3 and ft' completely characterize
the incremental properties of Drucker-Prager plastic material. Traditionally H has been
considered positive (which describes plastic hardening, i.e. increase of the yield limit).
However, allowing it to be negative provides a convenient model fvr strain-softening,
describing degradation of the yield limit (a model of this type has been used in nonlocal
analysis of tunnel cave-in; see Balant and Lin, 1988).

On the basis of eqns (10)-(14), it can be shown by a well-known procedure that the
tangential (incremental) moduli are

GD. + K 6 +D,% =jk --- D ik +# H(5)

For nonassociated plasticity (fl' # P) the tangential moduli for loading are nonsymmetric,
while for associated plasticity (fl' = P3) they are symmetric (with respect to interchanging ij
with kin). The tangential moduli for unloading are assumed to be the same as for initial
elastic loading, and so

D 'jk, = (K - J G) b6 + 2GaL, 6j . (16)

Although the material is assumed to be isotropic, the tensor of incremental moduli for
further loading [eqn (15)] exhibits stress-induced anisotropy.

After implementing the Drucker-Prager model in the computer program, it has first
been checked whether the results for the case a1/a2 --+ o, a 3/a 2 - x agree with the solution
of Rudnicki and Rice (1975). They do.

The critical state condition in eqn (5) or (9) depends on the following four non-
dimensional material parameters

v, HIG. 3, ft' (17)

in which v = Poisson's ratio. In addition it depends on sjjf, i.e. the ratios of the initial
deviatoric stresses, and also on nondimensional geometric parameters such as L/h for
localization in a band, and a,/a,, a3ia, for localization in an ellipsoid. It does not depend
on the elastic modulus E, however, because the division of eqn (5) or (9) by E has no effect
on its eigenvalues.

The effect of the aforementioned parameters has been studied numerically. The eigen-
values of matrix Z in eqn (5) or matrix Z, in eqn (9) have been calculated on a computer
for various combinations of the parameters in eqn (1 7). Using Newton's iterative method,
material parameter combinations for which the smallest eigenvalue vanishes have been
found, and their plots are shown in Figs 3-13. The initial stress states considered in these
diagrams were: uniaxial compression, biaxial compression, pure shear (s,2 0 0, other
s~j = 0), and uniaxial tension. Poisson's ratio has been considered as v = 0.18 for all the
calculations.

Figures 3-5 show the effect of the ratio of the layer thickness L to the band thickness
h on the value of the plastic modulus H at which the stability limit is reached. The states
below each curve are stable, the states above it are unstable, and the states on the curve are
critical. In Figs 3-5 on top we see the curves for various values of fl' when P = ft' (i.e. for
associated plasticity, for which the normality rule is satisfied). In Figs 3-5 at the bottom
we see the curves for various values of the internal friction coefficient fl' when the dilatancy
ratio is fixed as / = I. As might have been expected, the thicker the given layer, the lower
is the magnitude of the plastic modulus H at which the layer becomes unstable.

To check the limit case L/h --* i. we rewrite eqn (8) as [D*,,+D', j(L-h)h 6u. 2 =
0. Since the equation D ,,2 6u'5., = 0 has no nonzero solution (D'W is positive-definite), we
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5 Infinite planar band

4 (uniaxial tension)

3 o ,"1' -"2.0

o
2 1.0 1.5

0.5
0.

1- 10 100
3 -

1 1.5
1.0

0.5

0

1 10 100

LJh

Fig. 3. Effect of size LIh on critical plastic hardening modulus H for infinite planar band in uniaxial
tension.

conclude that at least some component of D 112 must tend to m to have the posssibility of
localization (nonzero 6uj.2). According to eqn (15) this occurs if and only if H - .-

Therefore, the curves in Figs 3-5 tend to oo as L/h -, 1.
Another check on the present general numerical solution is provided by the special

case of a band in an infinite space solved by Rudnicki and Rice (1975), which corresponds
to L/h -* oo. Indeed, their eqn (16) yields numerically the same results as the present solution
for L/h - oo and the Drucker-Prager material. It should be noted that Rudnicki and
Rice considered the band to have arbitrary orientation and used among the critical state

6
Infinite planar band

4(pure shear)

% _._ ,, O'= 2.0

2 1.5

1.0

110 100

4

3I - 1.0

'-2.0

1 10 100

t/h

Fig. 4. Effect of size on critical H for infinite planar band in pure shear.
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Infinite planar band
6 -(biaxial compression)

3- O-W,,2.0
1.5

I -- 1.0
2

~0.0
0

1 10 100

5

4

P' "n2.0

3 1.5
1.0

2

1
0 I

1 10 100
L/h

Fig. 5. Effect of size on critical H for infinite planar band in biaxial compression.

conditions for all possible orientations of axis x 2 the one which is most severe. In the present
study, on the other hand, the orientation of the band (axis x:) is fixed because the band of
thickness h must be parallel to the surfaces of the layer of given thickness L (except when
L-- o).

The asymptotic values of the curves are interesting. For an infinitely thick layer (i.e.
infinite space), the strain localization instability does not occur at zero plastic modulus
(H -. 0), as might have been expected, but at a finite negative value of the plastic modulus.
This means that strain-softening according to the Drucker-Prager plasticity model is stable

Elliptic cylinder; (uniaxiol tension)

2

•~ ~ ' 2.0"---

.5 .00
0 10 100

p -1.0 XV~G

&Z
Pm2. 0

.0

01 1010
ae/al

Figl. 6. Effect of ratio a,/a2 of ellipsoidal axes on critical H for elliptic cylinders in uniaxisi tension.
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6 Elliptic cylinder(uniaxial compression) I , 3 -2.0

4 - 1.5

1 2 1.0

~0.5
-- 0.0

0 L110 10
4

0--1.0 -' ,2.0

3 1.0

0.5

1 0.0

| ,,

01
1 10 100

Fig. 7. Effect of axis ratio on critical H for elliptic cylinders in uniaxial compression.

against localization into a planar band even in an infinite space, provided that the plastic
modulus magnitude does not exceed a certain limit.

By contrast, in the previous work (Balant, 1988a), which considered only incrementally
isotropic material properties, the value of the softening modulus E, (which is analogous to
H) always approaches zero for an infinitely thick layer. This implies that the strain-softening
cannot be stable in an infinitely thick layer if the incremental modulus matrix is isotropic.
Apparently, strain-softening of plasticity type (i.e. degradation of the yield limit) is not as
destabilizing as some other forms of incremental material properties.

Elliptic cylinder
(pure shear)

3 -- -- -- -- -- - l-2.0

2 1.5

11.0

01
1 10 100

2
10-1.0

0.5

0.0
01

1 10 100
aaia2

Fig. 8. Effect of axis ratio on critical If for elliptic cylinders in pure shear.



12 Z. P. BA2ANT and F.-B. Lis

6 - Elliptic cylinder
(biaxial compression)

4-
C, 1.5

I 1.0

0.0

0
10 100

4
OM 1.0

0'- 2.0

1.5

C2 1.0

0
10 100

C11/012

Fig. 9. Effect of axis ratio on critical H for elliptic cylinders in biaxial compression.

Figures 6-9 show the dependence of the critical plastic modulus on the aspect ratio
a 1/a2 of a strain-softening ellipsoid degenerated into an infinite elliptic cylinder, i.e. a3/a2 --+
oo. This limiting case is equivalent to localization in an infinite planar band within an
infinite space. So the asymptotic values from Figs 6-9 and Figs 3-5 must coincide. They
indeed do, which serves as a check on the correctness of the calculations.

Again it might have been expected that for an infinite aspect ratio as/a,, the critical
value of H should vanish. Surprisingly, it does not. The preceding comments apply here,
too.

Prolate spheroid

(uniaxial tension)
3

OV -2.0

1.5
1 , 1.0

01 0.0
10 100

2 0 -1.0 02 .

01p
1 10 100

(11/(12

Fig. 10. Effect of axis ratio on critical H for prolate spheroids in uniaxial tension.
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5 Prolate spheroid

4 (uniaxial compression)

C
3

1.5
2

1.0
'- 0.5

0.0

0 _

10 100

1.0 0' =2.0

1.5

I 1- 0.5

0.0

110 100

Ctlia2

Fig. 11. Effect of axis ratio on critical H for prolate spheroids in uniaxial compression.

Furthermore, it should be noted that generally very high aspect ratios of the ellipsoid
are needed to reduce the critical magnitudes of H near that for localization into a band in
a layer. This of course means, similar to the conclusion of the previous study (Baiant,
1988a, b), that the localization stability limits for a planar band are not well applicable to
finite bodies representing typical structures.

Figures 10-13 show the dependence of the critical magnitudes of H on the aspect ratio
for prolate spheroids (a2 = a3). As the aspect ratio tends to infinity, the prolate spheroid
approaches an infinite cylinder (a fiber). This is a different limiting case than before, and
vanishing of the magnitude of H is expected. It is also noteworthy that the strain-softening

Prolate spheroid
(pure shear)
3 p-I ' 2.0

2 . 1.5

1.0
1- 0.5

0.00
0 10 100

1 - 1.0

2 '-2.0

1.5
1.0

1 0.5

9.0

0

0 10 100

Fig. 12. Effect of axis ratio on critical H for prolate spheroids in pure shear.
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Prolate spheroid
. (biaxial compression)

3 --- - -- -- - - - - - = 2.o

2.-

1.

0.0

o 1o 100
2

=' ' .- 2.0

1.5

0.5
o0.0

0 10 100
a,/a2

Fig. 13. Effect of axis ratio on critical H for prolate spheroids in biaxial compression.

in prolate spheroids is much more stable than in elliptic cylinders, i.e. the critical magnitudes
of Hare much larger in Figs 10-13 than in Figs 6-9.

The eigenvectors of matrix Z or Z1j for the critical states for which the lowest eigenvalue
is zero have been calculated too. For several typical cases, these eigenvectors are shown
graphically in Fig. 14 for the volumetric (Renduli6) sections of the loading surface, and at
bottom right also for the deviatoric cross-section (the values v = 0.18, fi' = 1.0 and uniaxial
tension have been assumed in these calculations). In plotting these eigenvectors, it is
understood that the axes of ev and the deviatoric plastic strain intensity x = )2 are
superimposed on the axes of the volumetric stress and the deviatoric stress intensity. It is
interesting that in the volumetric cross-section these eigenvectors are always inclined away
from the normal to the loading function and toward the deviatoric axis, for all the dilatancy
ratios f. These eigenvectors, of course, need not be normal to the loading function even if
normality (fi' = ) is assumed (it is the plastic strain incremental vector which must be
normal if/' =

CONCLUSIONS

Based on the general stability conditions for localization ofstrain-softening into planar
bands and ellipsoidal domains, the critical values of the plastic modulus at stability limit
are calculated for nonassociated and associated Drucker-Prager plasticity. Also presented
in a direct derivation of the critical state conditions, which is simpler than the previous
derivation of the stability conditions. It is found that strain-localization instabilities of the
type considered do not occur for a certain range of material parameters even if strain-
softening takes place. This is true also for strain-localization into a planar band in an infinite
continuum, even though previous uniaxial analysis (Baiant. 1976) as well as the multiaxial
analysis (Balant, 1988a) indicated such situations to be always unstable for certain other
constitutive models.
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Fig. 14. Eigenvectors at the critical states in the volumetric and deviatoric sections.
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Abstract

A closed form solution is developed for shear banding in strain-softening

viscoplasticity in one dimension. The stability and structure of the shear band and how

they relate to the imperfection is then studied. It is shown that the structure of the band

depends on the structure of the imperfection: for continously differentiable imperfections,

the shear band is continously differentiable, whereas when the imperfection is CO at the

maximum, the shear band is C, and cusp-shaped. For step function imperfections, the

shear band is shown to be a step function, but it is shown that this solution is unstable.

Fourier analyses show that the width of the shear band depends directly on the width of the

imperfection, suggesting that the imperfection scales the response of the viscoplastic

material. New definitions of localization and stability in terms of a response function are

also proposed.



material. New definitions of localization and stability in terms of a response function are

also proposed.

1. Introduction

Considerable progress has been achieved in the past decade in the development of

techniques for the study of material instabilities such as shear banding. Strain softening

viscoplastic models have proven to be effective in capturing at least the gross characteristics

of shear banding. Molinari and Clifton [1] have shown that viscoplastic material models

exhibit what they call L*. localization; a definition which has proven useful in predicting

conditions that lead to shear banding.

Pan [2] has shown that in the softening range, viscoplastic material models exhibit

instability in the sense that Fourier perturbations grow for all wavelengths. It is of interest

that this contrasts with the behavior of localization limiters, where perturbations with

wavelengths above a threshold which depends on the localization parameter, do not grow

unboundedly; Lasry and Belytschko [3]. Wu and Freund [4] using the method of

characteristics, have shown that rate-independent softening models exhibit a phenomenon

which they term "deformation-trapping" as a consequence of imaginary wave speeds.

They then showed that they could obtain a solution numerically by adding rate-dependence

(viscoplasticity) and coupled heat transfer. Bazant and Belytschko [5] obtained a closed

form solution for rate-independent strain-softening. They showed that the strain softening

was limited to a set of measure zero, which explains the difficulties of obtaining such

solutions by numerical methods. They also explained that the rate-independent solution is

physically unreasonable since the strain-softening, which is intended to model damage, is

associated with no energy dissipation, because it occurs over a set of measure zero.
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Needleman [61 showed that the ill-posedness of the rate-independent model could

be eliminated by the addition of rate-dependence in the form of a viscoplastic model, these

findings concur with those of Wu and Freund. Needleman also concluded that the rate-

dependent model admits discontinuous solutions which are unique for a given

imperfection. However, we will show that solutions associated with step imperfections

which are discontinuous in the strain are unstable. Since such solutions are widely used,

this is a significant point.

Wright and Batra [7] and Wright and Walter [81 have reported numerical solutions

for viscoplastic dynamic problems coupled with heat transfer. Wright and Walter show

that the shear strain distribution at the maximum is actually flat over a very small distance;

however, extremely fine meshes with a logarithmic distribution about the center of the band

and on the order of 103 mesh points were needed to achieve such solutions.

One factor which has been glossed over in most of these solutions is the role of the

initial imperfections, or perturbations of the initial data. Most of the authors cited have

used triangular imperfections or step imperfections. In this paper, we will show via a

closed form solution that the imperfection plays a crucial role in the evolution of a

quasistatic solution of shear banding.

We will adopt the classical mathematical viewpoint of dynamical systems theory in

that an evolution solution is considered stable if a perturbation results in a solution which is

in a finite "ball" or "hypersphere" about the unperturbed solution. By using this

framework, we show that the homogeneous solution, for a strain-softening viscoplastic

material is unstable. Solutions which are step functions with one sub-domain in a strain-

softening regime, the other in a non-softening viscoplastic regime, are also shown to be

unstable solutions. These solutions cannot be achieved physically and are meaningless.
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The morphology of the shear band is shown to depend strongly on the structure of

the imperfection. If the imperfection is smooth (CI), then the shear band has the same

character with a continous derivative at its maximum. If the imperfection is CO with a

discontinuity in its derivative at the maximum, then the shear band also has a cusped

structure with discontinuous derivatives at its maximum.

Furthermore we show that imperfections introduce a length scale into the evolving

shear band. In particular, the spectrum of the shear band is related to the spectrum of the

imperfection. It is possible that the viscoplastic model, when used correctly with

imperfections that are representative of those which occur in nature, will reproduce the

strain fields observed in experiments.

2. Problem Formulation

We consider a slab of length 2L subjected to a shear stress which rises

instantaneously to a stress a* and then remains constant; see Fig. 1. The governing

equations are

the equilibrium equation

x = 0(1)

the strain displacement equation

E = u x  (2)

and the viscoplastic constitutive equation

6r= G (i- e pP) (3a)

, = ao (g( M (3b)

In the above, a is the shear stress, e the corresponding shear strain, G , the elastic shear

modulus, g is the viscoplastic response function, and a. and m are material data, here 0 <
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m <1 and m -.> 0 represents the rate independent limit. Superposed dots denote material

time derivatives and commas denote derivatives with respect to the variable which follows.

The boundary conditions are

r(Lt) = * H(t) (4a)

u(-L)=O (4b)

where H(t) is the Heaviside step function. Equations (1) and (4a) imply that

&= 0 for x i [ -L, +L], t > 0 (5a)

Hence

a= o*, t > 0 (5b)

k= p (5c)

The plastic response function for a softening material is taken to be

g( 'P) = a (6a)

so that when tvP = 0, g(evP) = ay, here p > 0 is a material constant, ary is a reference

stress that corresponds to the yield stress and eo =a-

Let

e = eo + e-E (6b)

0*
where e = - is the strain developed in the elastic response.

Using equation (6a), and since the elastic strain rate i = 0, for t > 0, the viscoplastic

response function may be written as
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g(e) = ay (6c)

This, with equation (3b) and equation (5b), gives

o* = g(e) (7)

To represent initial imperfections, the yield stress ay is perturbed as follows

ay = ao (1 - pfx)) (8)

wherej.t is a small parameter representing the amplitude of the strength imperfection.

Combining equation (5) and equation (7) yields

a - (9a)

where a(x) = (1 - p f(x)). (9b)

Introduce the following dimensionless variables

= ao r (1 a)
e (10b)

-0
G* (10c)

Equation (9a) may now be written in dimensionless form as
r.= awx 7,'P ( .r (11I)

Integrating in time yields

M d = r7 -M di (12)
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where r/ and C'are dummy variables. After integration, the following expression is

obtained for the strain field

7_(Xt) m i+ 1 (13)

Unless stated otherwise all results presented subsequently have been obtained using T* = 1,

m=0.01, p = 0.02, and all spatial profiles of field variables have been evaluated at = 0.9.

Stability of the strain field solution

For a perfect slab, i.e. cXx) = 1.0, equation (13) yields the homogeneous solution

SP m + r (14)
m

However, this solution is unstable. Stability requires that if the initial data is perturbed by a

small amount, then the solutions must differ by a small amount. To be specific, if

solutions with initial data al (x) and ca2(x) are ul (x,i) and u2(xt), then if

II al (x) - a2 (x) I < Ai (15)

then ul (x) is a stable solution if

1 ul (xi) -u2(XJ) II < CA Vt (16)

where C is a constant. If

a(x) = 1.0 (17a)

a2(x) = - cos-- (17b)

then y7(x,i) is a homogeneous solution given by equation (14), whereas r2(xt) is shown

in Fig.2; the numerically integrated displacement fields ul (x,i) and u2(xt) are shown in

Fig.3. It can be seen that the two displacement fields do not satisfy (16), so the

homogeneous solution ul (x,i) is unstable.

7



The strain-softening viscoplastic material has the idiosyncrasy that even for two

perturbations which satisfy (15), the displacement fields may vary markedly. Thus, if we

consider al (x) and a2 (x) as shown in Fig.4, the solutions, shown in Fig.5, do not

satisfy the stability condition (16). It appears that once a perturbation is defined, its

stability should be examined by considering small perturbations of this initial perturbation

i.e. by considering a3 (x) where

Ii a2(x) - o3(x)I1 </.42 (18)

Another approach is to use a response function approach to stability, described

subsequently.

A commonly used perturbation in the literature is the step function

a(x) = 1.0 - I( H(x-b) - H(x+b)) (19)

The solution corresponding to this perturbation is shown in Fig.6. This solution has the

interesting property that even under the restriction (18), it is unstable. To illustrate, we

consider the perturbation a3(x) shown in Fig.7a. The solutions u2(x,i) and u3(xt) do not

satisfy (16), see Fig.7c, so u2(x,i) is an unstable solution. Step-function imperfections

are tacitly used in most finite element solutions. This analysis shows that the resulting

solution is not stable or physically meaningful at least for this constitutive model.

Stability in terms of a Response Function.

A feature of the viscoplastic constitutive model under consideration here is that

localization is triggered at the point at which al(x) is a minimum. As shown in Fig.5, the

shear band occurs at the location of the minimum of cz(x), which is quite random in a real

body. Thus for an arbitrary, small imperfection, the location of the band may differ

markedly. This randomness is in accord with experimental observations; unless notches or

other tailored geometric imperfections are used to trigger localization, the location of the
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shear band is quite unpredictable. However the overall response only depends on the

occurrence of the band, not its location. Thus for engineering purposes, it appears

worthwhile to consider an alternative definition of stability in terms of a response function,

the appropriate choice of which will depend on the problem.

This definition of stability is stated as follows. Given two imperfections cil(x) and

c*2(x) satisfying (15), then if

II rl(7) -r 2(1) II -Cou (20)

where r(i) is the response function, the solution is stable. For the particular problem

considered here, the response function may be taken to be

r(t)= u(L't),

so stability requires that

II ul(L,t) -u2(L,t) II = J~ul(Lt) - u2(L,t)12d }2< Cog (21)

Note that neither the homogeneous solution (14) nor the solution with the step function

imperfection (19) meets this stability criterion. On the other hand, the solutions

corresponding to the perturbations al(x) and a2(x)as defined in Fig.4 meet this criterion,

see Fig.5c.

The appropriate response function depends on the problem. In a problem with a

prescribed displacement, the response function would be the resulting load. For

engineering purposes, a solution which is stable in terms of a response function should be

an adequate solution.

9



2.1 The Spatial Distribution of the strain field

In this section we characterize the effect of the initial imperfections on the spatial

distribution of the strain field.

Let

m = n (22a)
m-p

1

m = (22b)

Using the above constants, the strain field y (xt) may be cast in the form

7(xJ) =[l+ i a' m"] (23)

It can be seen from the above, that if ax) is a C1 function, then y(x) is also a C1 function.

Thus for a(x) e C1, the maximum of y (x,i) occurs where =0

The first and second spatial derivatives of the strain field are given by

T-=- 1 + a a M 7 (24)

n + 8 d(25)

where
{ 1n. .l+m

=-{l ' ia } a m

From the above expressions it is clear that the derivative of the strain field vanishes only
-d da

when the derivative of the imperfection function vanishes, Le, a 4=* -a =0. If a(x) is a

C0 or C1, function, then y(x) is a C0 or C1 function respectively and )(x,i) is maximum

10



where a(x) is min..-num, see Fig.8 and Fig.9. If a(x) is a CO function, with a cusp-shaped

dcx dcx
maximum at xo, then - 0(xo-Ax) < 0 and z(xo+Ax) > 0 for Ax > 0 i.e. the left-hand

derivative is negative and the right-hand derivative is positive. Equation (24) then implies

that the right spatial derivative of )(x,i) is positive and the left spatial derivative is negative

since the quantities in the parentheses are positive. Thus the cusp-shaped spatial

distribution for ftx,) occurs only when aft) is a CO function rather than C1. Since many

investigators have used triangular imperfections, the prevalence of cusp shaped strain-

distributions reported in the literature is thus not unexpected.

In summary

a) The relative maximum of the strain field occurs where c(x) is a relative minimum.

b) Wherever the imperfection function has a constant magnitude, the strain field is constant,

this further implies that if the imperfection function is a step function, then the strain field

also contains a step function; see Fig.6.

3. Derivation of the Conditions For Localization

The concept of L.. localization proposed by Molinari and Clifton [1] provides a useful

framework to examine the suitability of mathematical models to describe localization in one

dimension. However the L*. definition of localization suffers from a drawback in that

localization is defined on the basis of the behavior of the strain field at infinite time and not

in terms of the current state variables. Since for a stress boundary condition the strain field

tends to infinity in finite time, the L. definition for this case is inadequate, though it does

usefully describe the behavior of the strain field accurately for a velocity boundary

condition. We propose a definition that accurately describes the behavior of the strain field

for both velocity and stress boundary conditions.
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Localization is defined to occur when the ratio of the maximum strain to the strains

at all surrounding points is a convex upward function of time. This may alternatively be

stated in terms of the peak strain as follows. The strain field is said to exhibit localization if

the peak strain is a convex upward function of time. see Fig. 10.

To determine necessary and sufficient conditions for localization, the strain field is

expanded in a Taylor series about the point of maximum strain i-, and the behavior off(r) =

is examined. Expanding in a Taylor Series about.i, where i is the point of

maximum strain

1d(j'i,) 1 dj).+,t+Ax2 + (26)
dx2

If the imperfection function is assumed to be CI then

da(i)-- = 0

-1=09- = 0

&2a~) > 0

x2 n m2(27)

12



Dividing the above expansion for )(i+ Ax,i) by

y (xJi)=l+ a" ~

yields the following

-Ki+ Ax,j) 0(AX) (28)
S1-

where

a m Ax 2  (29a)S(Ax) 2

Let

f(Axj) , (29b)
(.i+ ax,i)

It may be noted that n > 0, &2~:- - --  > 0, a(i:) > 0, Alx 2 > 0, => (Aix) > 0

Equation (28) may then be written as

1 O(Ax)

1(x =1+- ot 1  (29c)

(29d)

(1 + a')

13



o0 =.(x) (29e)

di (1+ ia-

Irrespective of the sign of 4, > 0 =;f(Ax,i) is a monotonically increasing function of

time. For > 0, is not monotonically increasing with time for all Ax. For < 0, -Y is

monotonically increasing with time for all Ax, i.e. f(,dx,i) is a convex upward function of

time.

Thus a necessary and sufficient condition for localization as defined above, is, < 0, i.e. m

< p. It may be noted that p < 0 > 0, and therefore a hardening law does not exhibit

localization. Fig. 10 illustrates the behavior off(Ax,i) for the cases when m < p and m >p.

Fig. 11 shows that the peak strain exhibits the same bebavior asf(Ax,l).

4. Scaling effect of the imperfection

For a step function perturbation, the width of the region of intense straining is set

by the width of the imperfection, i.e. the width of the shear band is equal to the width of

the imperfection. But as shown previously, this is an unstable solution which is not

physically meaningful. Given the absence of a length scale in viscoplastic material models

for quasistatic loading conditions, it has been of interest as to what determines the width of

shear bands. To better understand the effect of of C1 imperfections, the strain field given

in (13) is expanded in a Fourier series and the effect of the width of the perturbation on the

spectrum is studied. For the case of a parabolic imperfection it was found that the amplitude

of the dominant mode was directly proportional to the width of the initial perturbation.

From Fig. 12 and Fig. 13 it can be seen that the width of of the initial perturbation scales the

amplitude of the dominant mode of the Fourier spectrum of the strain field.
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ConclusiQns

A closed form solution for static shear banding in a viscoplastic one-dimensional

problem has been presented. The solutions exhibit a strong dependence on the morphology

of the initial imperfection. In particular:

1. In a homogeneous stress field, the shear band occurs at an extremum of the

imperfection, so the position of the shear band is quite random.

2. The continuity of the strain field is identical to the continuity of the imperfection,

i.e. for a C1 imperfection, the shear strain field is C1 .

3. When the imperfection is C-I, i.e. a step function, the strain field is is also C1 .

However, it has been shown that this solution is clearly unstable. This finding is of

relevance in finite element solutions with constant strain elements, where the imperfections

used are step functions, when, as is usually the case, the shear band is of the same size as

the elements. Futhermore, when the imperfection is a step function, the morphology of the

strain field differs significantly from that which arises from more realistic imperfections.

Thus solutions based on step function imperfections cannot reveal the details of the strain

field which are needed to understand material behavior at high strains.

Shear banding presents an interesting problem in stability. Even two imperfections

which are close to zero can lead to strikingly different solutions. Therefore a definition of

stability in terms of a response function has been proposed. This definition is particularly

useful for engineering purposes since it overcomes difficulties which arise from random

locations of shear bands.

A new definition of the localization process has also been proposed. This definition

though similar to Molinari and Clifton's [1], . localization, circumvents some of its

difficulties by avoiding infinite values of time or strain ratio.

15



Acknowledgement

The support of the Air Force Office of Scientific Research under Award
F49620-87-C-0030 to Northwestern University is gratefully acknowledged.

References

[1] Molinari, A. and Clifton, R.J. (1987). "Analytical Characterization of Shear
Localization in Thermoviscoplastic Materials.", J. App. Mech., ASME, 54, 806-812

[2] Pan, J. (1983). "Perturbation Analysis of Shear Strain Localization in Rate
Sensitive Materials." Int. J. Solids and Structures, 19, 153-164

[3] Lasry, D. and Belytschko, T. (1988). "Localization Limiters in Transient
Problems." Int. J. Solids and Structures, 24, 581-597

[4] Wu, F.H. and Freund, L.B. (1988). "Deformation Trapping due to Thermoplastic
Instability in One-Dimensional Wave Propagation" J. Mech. Phys.Solids, 32, 119-
132

[5] Bazant, Z.P. and Belytschko, T. (1985) "Wave Propagation In a Strain Softening
Bar: Exact Solution" J . Engrg.Mech., ASCE, 111, 381-389

[6] Needleman, A. (1988) "Material Rate Dependence and Mesh Sensitivity in
Localization Problems" Comp. Meth. App.Mech. Engrg., 67, 61-85

[7] Wright, T.W. and Batra, R.C. (1985) "The Initiation and Growth of Adiabatic
Shear Bands" Int. J. Plasticity., 1,205-212

[8] Wright, T.W. and Walter, J.W. (1987) "On Stress Collapse in Adiabatic Shear
Bands" J. Mech. Phys. Solids, 35, 6, 205-212

16



List of Figure Captions

Fig. 1. A slab of viscoplastic material subjected to an instantaneous step stress.

Fig.2. Strain field response to the perturbation represented by equation (17b).

Fig.3. Displacement versus position.

Fig.4a. Initial imperfection to illustrate the random location of shear bands.

Fig.4b. Initial imperfection to illustrate the random location of shear bands.

Fig.5a. Strain field in response to imperfection shown in Fig.4a.

Fig.5b. Strain field in response to imperfection shown in Fig.4b.

Fig.5c. Displacement field in response to perturbations in Fig.4a and Fig.4b.

Fig.6. Strain versus position for a step function perturbation.

Fig.7a. Imperfection to illustrate the instability of step function perturbations.

Fig.7b. Strain field response to perturbation shown in Fig.7a.

Fig.7c. Displacement versus position for the imperfection shown in Fig.7a.

Fig.8 Strain field for a triangular imperfection.

Fig.9. Strain field for a parabolic imperfection.

Fig. 10. Behavior of the ratio of peak strain to the strain at surrounding points as a

function of time.

Fig. 11. Peak strain as a function of time.

Fig. 12. Effect of the width of the imperfection on the Fourier spectrum of the strain

field.

Fig. 13 Effect of width of imperfection on the dominant mode of the Fourier

spectrum of the strain field.
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Fig. 2. Strain field response to the perturbation represented by equation (17b).
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Fig. 4b. Initial imperfection to illustrate the random location of shear bands.
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Abstract-In materials with strain softening, closed form solutions have shown that the energy
dissipation associated with the localization and damage processes vanishes. For finite element
solutions, the dissipauon depends on the size of the element in the localized zone. To remedy this
situation, non-local and imbricate formulations have previously been proposed. In this paper. a
simple remedy based on introducing additional higner order terms in the governing equations in
the strain-soiftening portions of the domain is proposed. It is shown that the resulting formulation
provides solutions which are independent of element size with a finite energy dissipation. Example
solutions are given for one-dimensional rod problems and one-dimensional spherically symmetnc
problems.

1. INTRODUCTION

When deformed far enough into the inelastic range. certain materials exhibit narrow zones
of intense sraining. This localization of deformation may be linked in many cases, in
particular for one-dimensional models, to a strain-softening effect in the constitutive
behavior of the material, that is a negative slope in the stress-strain curve.

As will be seen subsequently, the appearance of localization in classical local continuum
mechanics with rate independence is associated, from a mathematical point of view, with
a change of type of the governing equations: loss of ellipticity in quasi-static problems;
change from hyperbolic to elliptic type in the dynamic case. This change of type allows the
prediction of the critical stress level which triggers localization: unfortunately, it leaves the
size of the localization zone unspecified in static problems and gives infinite strains over a
set of measure zero in dynamic problems(l. 21. When incorporated into a computational
model, strain-softening behavior therefore leads to severely mesh-dependent results, in
which deformation localizes in one element irrespective of its size. Furthermore, the energy
dissipated in the strain-softening domain tends to zero as the mesh is refined.

Several methods have been proposed to remedy this undesirable situation. In Ref. [3],
a non-local formulation was used based on an averaging procedure. and for one-dimensional
dynamic problems. a localization limited to a domain of finite size. and an energy dissipation
that remains constant with mesh refinement were achieved. This averaging approach has
also been used recently in Ref. [4], where the averaged quantities are the damage parameters
in damage-type constitutive laws. Another procedure of a similar type consists of adding
gradients of state variables: in Ref. [5], the gradient of the yield function was included in the
constitutive equation. Triantafyllidis and Aifantis[6] used a second deformation gradient-
dependent term in the expression of the strain--energy function to restore ellipticity. and
obtained analytic solutions in the particular case of the Blatz-Ko material. Alternatively,
Needleman illustrated in a recent paper[,] how, for a simple one-dimensional problem. the
introduction of material rate dependence in the constitutive model via viscoplasticity can
also result in momentum equations which remain elliptic and hyperbolic in the static and
dynamic cases. respectively.

These methods. as well as others that have been proposed in recent years. ultimately
try to eliminate mesh sensitivity in numerical calculations by ensuring that the size of the
localization zone remains finite, and can therefore be referred to as localization liuters. In
this paper. a localization limiter is proposed which is based on the introduction of an
additional higher order term in the governing equations in the strain-,(ftening portions of
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the domain. Attention is focused on models for which localization is directly related to the
onset of strain softening. namely dynamic one-dimensional problems.

The paper is organized as follows: Section 2 briefly reviews the mathematical aspects
and difficulties underlying the localization phenomenon. Section 3 introduces the local-
ization limiter based on the addition of high order terms to the strain expression. .xamples
are presented in Section 4. where the localization limiter is used in one-dimensional rod
problems and spherically symmetric converging wave problems. This last type of problem
is considered again in Section 5, which analyzes solutions obtained by using a material rate-
dependent approach.

2. LOCALIZATION AND CHANGE OF TYPE IN THE GOVERNING EQUATIONS

From a mathematical point of view. the localization phenomenon is associated with a
change of type of the governing partial differential equations. This change of type can be
of various nature.

(1) In static problems, the onset of localization is connected with the loss of ellipticity
in the equilibrium equations[8, 9]. In this approach. localization is viewed as an instability
process: critical conditions are determined, at which the constitutive relations allow a
bifurcation from a homogeneous state of deformation into a shear band with high strain
values. This bifurcation is related to the loss of ellipticity of the incremental equilibrium
equations. It should be pointed out that in multidimensional problems, the onset of local-
ization is not necessarily linked with strain softening (a decline in the stress value with
increasing strain), but indeed localization can occur with a positive slope in the stress-strain
relation, in the presence of certain geometric or constitutive factors, such as non-associative
flow rules[ 10. 11].

(2) In the wave propagation context, the emergence of localization is linked with a
change of type in the governing wave equation. this time from hyperbolic to elliptic. Let us
consider for example the one-dimensional wave equation

a(c)., - pu ... 0 < x < L 1

where p is the material mass density. u the displacement, a the stress and r the strain. related
to the displacement through the compatibility condition

c = u.. (2)

Equations (1) and (2) can be written as a system of first-order differential equations

: [000
• _(3)

where the velocity is

I" = Zd.. 4

If the function a' is strictlv nositive. eqn (3) is a stnctly hyperbolic system. and in the
particular case of a linear elastic material (where a'wi = E,. the tangent Youngs modulus).
we find the usual expression for the wave speed co
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If, however, the tangent modulus a'(&) decreases to zero for a certain strain e, system (3)
loses strict hyperbolicity and, further, if a'(e) < 0. it becomes elliptic. The corresponding
initial value problem. now elliptic, is considered to be ill posed because the wave speed is
imaginary. From a physical point of view. this change of type results in an accumulation
of strain into a band or "deformation trapping", as described by Wu and Freund(12].

In both cases. static and dynamic. this change of type in the governing equations raises
mathematical difficulties as well as numerical ones: when finite element solutions are
computed, some of the results appear to be strongly dependent on the mesh refinement,
since there is no finite length scale associated with the localization. Furthermore, the energy
dissipation vanishes as the size of the element goes to zero, and in closed form solutions( 1. 2],
it is shown that the dissipation vanishes because it occurs over a set of measure zero. It is
of interest to note that the imaginary character of the wave speed is not a critical shortcoming
since in closed form solutions~l. 2] the strain softening is always limited to a set of measure
zero.

(3) The difficulties due to a change of type in the governing equations are not confined
to the area of solid mechanics. In fluid dynamics, classical transonic problems are governed
by the transonic small disturbance equationf 13]

[I -,f -(,+ I) ,14..5., + 0. = 0 (6a)

that can be rewritten as

,4 0 (6b)

where 4 is the non-linear coefficient appearing in eqn (6a), .-4, the free stream Mach
number. 0 the velocity potential. and y the ratio of specific heat coefficients; eqn (6b) is an
equation of mixed type. it changes from hyperbolic to elliptic when A changes from negative
(supersonic flow) to positive (subsonic flow). This change of type also causes numerical
difficulties and is often treated by a regularization term consisting of higher order derivatives.

3. A LOCALIZATION LIMITER BASED ON HIGHER ORDER TERMS

As it has been already pointed out. the energy dissipation vanishes for dynamic
solutions involving strain softening because the localization takes place over a set of measure
zero. To remedy this situation. localization limiters have been introduced. A localization
limiter should ensure that energy dissipation remains finite at arbitrary mesh refinement
so that damage localization to a region of zero volume does not take place. One way this
can be achieved is by inserting additional gradient terms into the momentum equation.
More precisely, we will consider for the sake of clarity the one-dimensional equation of
motion

a.., = pu .. (7)

We replace the usual strain-displacement relation

E= u, (8)

by the following expression involving a higher order term:

o (9a)

or
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k

Fig. 1. Linearized analysis: plot of 7(k) = (lE, lp)(1 -k 2,:1'k as a function of wavelength k.

U .u, + .U..' (9b)

where a is a constant which will determine the extent of localization control.
We consider a linearized analysis of a disturbance bu. in which the material is in a

strain-softening state over an interval [x 1.x]. Then

ba(x) = -IE, Ic(x) for x in [x.x:] (10)

where the tangent modulus E, < 0 is assumed constant. We will call the second term in the
modified strain expression (9a) the localization limiter.

The equation of motion (7) becomes, for a small disturbance 6u. using eqns (9b) and
(10)

6u., + (E, '6u. + =6u., 1 ) = 0. (1I)P

If we look for a possible wave solution of this last equation (using a von Neumann
procedure[14])

fu(x. t) = A e"" - "  (12)

where k is the wave number and v the phase velocity, we obtain

r(I -- xk (13)

or

kv = I (1-k) k. (14)

We can plot (Fig. 1) 1(k) = {(iE,I/p)(l -,k-)} k as a function of the wave number k. For
high frequencies. that is a wave number k > 1: V, .(k) is imaginar': therefore kr is real
and the disturbance bu is bounded. For low frequencies (k < 1 , 2). kc is purely imaginary.
and therefore 5u grows unboundedly.

However, the region of the material where strain softening occurs is presumably small
compared to a charactenstic length of the problem (the total length of the rod). in fact in
certain closed form solutions it is confined to a single poin: as a - 0. Therefore. large
wavelengths will not be able to develop in the strain-softening region. and the above analysis
shows that the higher order strain will bound any growth of short wavelength inputs. This
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•,,ry simplified analysis illustrates the effectiveness of the additional higher order term in
limiting the localization.

This effect can also be understood more qualitatively: near a peak in the local maximum
in the strain function, the second derivative will be negative, therefore its presence will tend
to reduce the strain or. equivalently, to increase the stress, since we are in the strain-
softening branch of the stress-strain cure.

A simplified perturbation analysis sheds light on the relationship between the parameter
7 and the width 6i of the localization zone. The modified equation of motion

IE .E! 0 (15)
P

can be nondimensionalized by introducing x* = xL

C'u I&,, (a~ j_' aU'

--- + +0 (16)
it- pL- kJx

whereg = x!L2.
The localization limiter appears as a singular perturbation term. since the coefficient

of the highest order derivative in the equation is much smaller than the other coefficients
(u << 1). Hence, the effect of the additional term is negligible everywhere, except over a
length 6 where the second- and fourth-order terms should balance each other. We define a
new scaling

(17)

The balancing is given by

au -, du

Ax*_ ""/Lx=  (18a)

or

-u - / u.,. (18b)

As y tends to zero. the spatial derivative terms balance asymptotically when

a- .(19)

The size ,5 of the localization domain is therefore proportional to ,, x. i.e.

- p 7, p = constant. (:0)

It should be pointed out that the localization limiter proposed in eqn (9b) is related to
the Lax-Wendroff method[15] used in fluid mechanics in order to trigger shocks within a
narrow confine of the finite difference gnds. In fact. eqn (15) is a mathematical counterpart
of the transient advection equation with artificial diffusion

D.-u0,-X0, = 0 (21)

analyzed by RoacheI 161.
In another domain of application, higher order derivatives have also been used in the

past for the backwards heat equation. known to be ill posed. In the context of phase
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transformations in metal alloys (the "spinodal decomposition~ problem). Cahn and Hil-
liard[17] defined a generalized diffusion equation

":- = D(u) 7 -2K- (22)
cr cx CX, ex

The additional fourth-order term in eqn (22), which accounts for the increase of energy
due to the gradient of the concentration u. prevents the appearance of instability in the
solution when the diffusion coefficient D(u) becomes negative. Here again, a higher order
term is introduced to deal with a change of type in the governing equations.

The localization limiter defined in eqn (9a (is related to the strain averaging technique
used in the non-local theory through a Taylor expansion[18]. In the one-dimensional non-
local theory, the non-local or average strain g at a point x is defined as

Et ! X c(x- +s) ds. (23)

We can write an expansion around the center value t(x)

S2-s
2(x + s) = c(x) + scx) + "- c~, x)- o(s:) (24a)

which, inserted in eqn (23). yields

f(x) = r(x) + -_ c" (x)+ ,(l'). (24b)

The localization limiter i appears as the lowest order differential approximation of the
limiter based on a strain averaging procedure over a length 1, with

1= ',24-,}' :  (25)

in the one-dimensional case. It is of interest to compare expressions (20) and (25); evidently
the domain of averaging 1 is related to the size of the domain of localization.

4. NUMERICAL IMPLEMENTATION AND EXAMPLES

The initial value problem. eqn (3) was solved by the finite element method. We
used the usual weak (variational) form of eqn (1) (all natural boundary conditons are
considered homogeneous)

J [6U.a+6UPU.,] d.x - 0. (26)

This displacement field was then approximated by

u(x, tl = .VxIu,it (7

where u, are the nodal displacements. and repeated upper case indices are summed over the
nodes. This yields the discrete equations
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,V, dx+ PNjfVuj,, d = 0. (28)

This can be written as

uf,u11, +.P,' = 0 (29a)

where

f' o = No &c (29b)
jo

M1 = pNIVj dx. (29c)

A tangent stiffness is not used in the numerical implementation since an explicit time
integrator is used, but it is interesting to write it down since it indicates that the system is
not self-adjoint. The tangent stiffness is defined by

=(30)

so using eqns (29b). (27) and (9) we obtain

KU = f.,E, (,Vj, ,V..) dx (3 1a)

where E, is the tangent modulus. This tangent stiffness matrix, that would appear in an
implicit treatment of the transient problem, could be transformed by an integration by
parts into a self-adjoint operator and an additional boundary term

= V E V - , ,,,V & ±: + W V1.E, - .0. (31b)

K'3 J V,..E,,V.,.,dc-f" L

The introduction of the second-order derivative in the strain expression. and therefore
of a fourth-order displacement derivative in the equation of motion would require in theory
the use of C' (Hermite) shape functions. As we wish only to illustrate the effectiveness of
the method, we have used simple linear displacement C") finite elements. The second
derivative is computed by a centered finite difference approximation

= ,- -,- )/Ax (32)

and we have used uniform (constant Ax) meshes. Calculations were conducted with an
explicit time integrator, namely a central difference method with a lumped mass matrix.
We used for most calculations a Courant number CFL = 0.7-0.9. although. in certain cases,
a lower value 0.4 had to be used to obtain stable results.

An interesting aspect of the method is that the localization limiter is introduced only
in the remon where strain softening occurs: this is implemented by initializing at zero an
array of values xI). j = 1..VELE where NELE is the number of elements. and attn buting
the value .if) - only when eiementj has reached a strain-softening state. Therefore. in
the regions of the body where strain softening is not reached. the strain considered in the
equation of motion is the usual local strain . without any higher order derivatives.

Two additional features were incorporated in the method. It should first be noted that
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ScT E}/ 'E
E

S Totol

E, E,
Fig. 2. Combination of stress-strain laws For the one-dimensional rod problem. E is Young s
modulus. for the sphericall. symmetric problem. E is replaced b% K (bulk modulus) Er b, K,.

by c, (voiumesic strain).

+ = 0 (33)

admits as a solution

tI(x) = A cos x+B--x (34)

where A and B can be arbitrarily large. This solution t. called a zero-energy mode, can
appear in the numerical solution. when superposed on the "real" solution, it leads to
meaningless results. The same problem arises in the finite element implementation of non-
local methods based on strain averazing[3]. and has been resolved so far only by combining
a local and a non-local law. Similarly, in our case, we will combine two stress-strain
relations

= C~i~i(35a)

= C(E) (35b)

where a is the stress resultin.: from the localization limiter L - the stress resulting from the
usual strain t. '(I) and C(c) account respectively for a constitutive relation with strain
softening and one without it. as summarized in Fig. 2.

The stress used in the equation of motion is taken as a combination

S = (I -c)a-c. (36)

The term c- acts as a stabilizing factor, preventing the development of zero energy modes.
Parameter c is typically of the order of 0.1.

Second, in order to obtain solutions in the presence of the higher order denvatives. it
is necessary to add damping. When wave propagation phenomena are analyzed by finte
elements, oscillations from one element to the next appear ahead of and behind of the wave
front, in both time and space (Gibbs' oscillations)[19]. These oscillations would lead to
erratic second derivatives, and we therefore prevent them by introducing damping via
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where parameter /3 controls the amount of damping introduced. The above represents a
stiffness proportional damping, which acts on the high frequencies introduced by the Gibbs
phenomenon, whereas mass proportional damping would affect low frequencies.

It should be pointed out that the raison d'itre of these two additional features is purely
related to numerical aspects, and that they are not intnnsic to the method itself. As far as
damping is concerned for example. Sandier and Wright have shown(0] that in certain
situations (wave propagation in a rod) damping alone can act as a localization limiter with
a certain effectiveness. Reference [21] showed however the limitations of that approach.
and its inappropriateness in other situations such as in the spherically symmetric problem
described in Section 4.2.

The localization limiter introduced here can handle these two types of problems
successfully, proving therefore that it is not the damping term alone that accounts for the
localization limiting effect.

4. I. Wave propagation in a rod
This problem was considered in Ref. (3] (Fig. 3(a)). Equal and opposite velocities v.

are applied to the two ends of a rod of length 2L made of a strain-sot tening material, so

that tensile waves are generated at the ends. The magnitude of the strain is slightly less than

the strain corresponding to the onset of strain softening. These tensile waves propagate

elastically to the center: when they meet at the center, the stress would double if the behavior

remained elastic, so that strain softening starts at this midpoint.

The analytical solution for this problem was proposed in Ref. [I]' localization occurs

at the midpoint where the strain becomes infinite. The solution, symmetric about the

midpoint x = L. is expressed for the left half as

X 2L - x'\

U 2 "- ( t- (38a)
CO/1  CO  /r x 'L--X" r

H - L)(-L) 38b)
\ 'IC.)/ J

a)

L

k

t Fie 3 Probiem descnotons (ao one-adimensionai rod probiern. :L = .O. bi onencailsyetic

pro elem. inerOr ra.ius R, - 10. extenor rau us R. = 0

t
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where H is the Heaviside step function. <A> = A if A > 0. <., 4 0 otherwise. 6 is ,i:e
Dirac-delta function. co the elastic wave speed in the material. Numerical studie- of this
problem based on non-local approaches were conducted in Refs [3.41. Here 'Ae wAill use the
localization limiter

--= f; - IE . (9a)

The combination of stress-strain laws considered to stabilize the zero ener-v modes is
illustrated in Fig. 2. and we used a damping factor # = 0.20. and a combination parameter
c = 0.15. in accordance with the results of Ref. [3]. Other parameters used in the calculations
were: density p = 1. end velocity t'o = 0.6. and for the stress-strain relations in Fig. 3.
E = I. yield stress a, = 1. E: - -0.25. ry = 5, nearly horizontal tail of slope E, = 0.001
beyond E.

It was first checked (Fig. 4) that. without introducing the localization limiter (that is.
for a = 0). the strain profiles are severely dependent on the mesh refinement, and the
localization zone shrinks to one element, irrespective of its size. Furthermore. the total
energy dissipated in the mesh tends to zero as the mesh is refined, as seen in Fig. 5(a).
Convergence studies were then performed with the localization limiter, for a value
a = 0.1667. for different meshes with an increasing number of elements (Figs. 6(a)-(c)).
They exhibit a localization limited to a finite zone. the length of that zone and the strain
profiles being independent of the mesh refinement. Moreover, the total energy dissipated
in the rod. computed as in Ref. [3] by

NELE hw(t,.,1) =w(t,) + t 5O"'+ J-I)(t.- r.)
i- I -

(39)

is independent of the mesh size. all other parameters remaining equal (in eqn (39). r refers
to the time step. and hi the size of element]). This is illustrated in Fie. 5(a).

Calculations were also conducted at fixed mesh size for different values of a (Fig. 5(b)),
showing that the length of the localization zone is linearlv dependent on ,,, (the line does
not extrapolate to the origin (0.0) since the presence of the damping coefficient fl partially
limits the localization (20]. even for a = 0). This is consistent with the results of Refs [3.4).

which found a linear dependence in I (averaging length). since the Taylor expansion (Z3)
yielded a linear relation between a and 1:.

4.2. Sphericall' symmetric problem
This problem (Fig. 3(b)) was considered with strain-softening materials in Ref. [21).

A sphere made of a strain-softening material is loaded with a uniform traction on its exterior
surface. To better appreciate the complexity of this problem. consider the load to be a ramp
function in time. Before the onset of strain softening at an interior surface S. a portion of
the stress will have passed through S. Due to the spherical geometry, the stresses in this
wave are amplified as they pass to the center and trigger the formation of additional
strain-softening surfaces. As conjectured in Ref. (21], it seems that an infinite number of
localization surfaces will appear. although no analytical solution has been proposed so far.

The localization limiter defined previously in eqn (9a) was used to solve numerically
this problem. We considered a sudden application of a uniform normal traction c, = poH('t)
at the exterior surface. where H is the Heaviside step function. The applied surface pressure
was chosen as p0 - 0.708, for this boundary condition. the wave propagating from the
outer surface remains elastic until the wavefront reaches 30% of the thickness R: - R,. The
other parameters used for the calculations were c = 0.15. 0.10. RB = 10. R: = 100. and
the same material constants as in Section 4.1 were considered. The equations corresponding
to this problem. adapted from Ref. (21]. are summarized in Lhe Appendix.

It was first noted (Fig. 7) that without the localization limiter (that is for a = 0). as
the number of elements is increased, several points of localization develop, and these points

I
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change arbitrarily .ith mesh refinement, even in the prebence of damping. These points of
localization can be appreciated both in the volumetric stratn plots, with the presence of
spikes. and in the radial di~placement plots, where sharp discontinuities indicate separation
along a surface.

The next group of solutions (Figs 8(a)-(c)) examines the effect of the localization
limiter. These solutions converge well with mc.h refinement, and furthermore, they are very
similar to those found with the imbricate element approach[2 I].

5. MATERIAL RATE DEPENDENCE SOLUTION TO THE SPHERICAL PROBLEM

It has been proposed recently by Needleman[7] that viscoplastic rate dependence
eliminates the change of type associated with strain softening. His discussion, presented in
the context of simple shearing, is equivalent to the tensile rod problem of Section 4.1. To
summarize the formulation of Ref. [7]. the incremental shear stress-shear strain relation is
written as

G(-. - ,(40)

Material rate dependence is introduced by writing the plastic strain rate *' in eqn (40) as

= af(-. g) (41)

where a is a material parameter and g a hardness parameter that evolves with accumulating
plastic strain ; f is given by a power law

f = (ig)l, (42)

where m is the strain rate hardening exponent. In the numerical applications, g is taken to
be a function of the effective plastic strain

= '* di (43)
.2/

here. a simple linear strain function is used

g=H, (44)

with 9(0) -
The non-dimensional quantities ;o!G. H, '-. :,'ro, -'i(:oiG) defined in Ref. [7) were also

used here. Furthermore. we considered numerical values of the different parameters leading.
in the rate-independent limit case. to a stress-strain curve similar to the curve considered
here (Fig. 2(c)). A step-by-step integration of constitutive relations (40)-(44) reveals the
role of the parameter m. as shown in Fig. 9: the rate-independent limit is approached as
m - 0. whereas, for increasing values of m. that is. for an increasingly viscous solid, the
stress-strain curve "overshoots" the strain-softening branch. delaying the loss of positive
definiteness of the stress-strain modulus.

The spherical problem of Section 4.2 was then solved introducing this material rate
dependence, for different values of m. Parameters -, - and G are now interpreted as the
volumetric strain, hydrostatic stress and bulk modulus. respectively. The shear modulus is
considered as in Section 4.2 to be negligibly small (10- (.

Figure 10 illustrates that. as m becomes smaller, the solution gets closer to the ones
obtained with our localization limiter Fig. 8(bi. However. the calculations become increas-
ingly difficult: as pointed out in Ref. [7]. when the constitutive equations are updated with
a simple forward Euler method. the stable time step decreases and eventually vanishes with
m. For example. the strain profile for m = 0.005 was obtained by running the problem with
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a Courant number CFL = 0.08. but even this very small value leads to unstable calculations
for m = 0.001.

6. CONCLUSIONS

The addition of a second derivative term to the strain expression leads to an efficient
localization limiter for strain-softening materials. possessing the following desirable fea-
tures: finite energy dissipauon at arbitrary mesh refinement, development of a localized
strain zone of finite size. independence of the calculations on mesh size. This theory may
be considered nonlocal in that it emanates from a Taylor expansion of a non-local strain
expression with a constant weight function.

l 14,60



5% D. WaSy and T. BE.-YMSHXO

It was shown by a Fourier analysis that this localization l:-riiter %ields a systemn of
equations which attenuate short waves but cannot prevent the occurrence of instabilities in
long waves. Since the initiation of strain softening appears to occur in very narrow zones.
and the second derivatives are used only in the strain-softeniiig (or localization) domari's.
this analysis implies that the growth of the strains in the localization domain will be
bounded. rather than being unbounded as in thet local, rate-independent -.,edium. This was
confirmed by numerical results.

A perturbation analysis reveals that the width of the zone in the strain-softening regime
varies with the square root of .7 which determines the strength of the participation of the
higher order derivative. This type of dependence is also indicated by a non-local interpret-
ation of this limiter and was also verified numerically. This localization limiter was tested
with success on one-dimensional rod problems. and on the more critical spherically sym-
metric problem. which emerges as a decisive test in evaluating the effectiveness of a local-
ization limiter.

The localization limiting properties of the viscoplastic material model were also studied.
It was shown that even in the spherically converging problem. this material model acts as a
localization limiter. However, it is somewhat ineffective in explicit time integration problems
since the stable time step becomes extremely small.

Several questions remain to be explored. A more thorough study of the additional
boundary conditions introduced by the higher order terms is necessary. It would be desirable
to relate the size of the localization zone (and therefore a) to the micromechanical behavior
of the material, such as grain size, microcracking effects and other microstructural proper-
ties, and to give a physical interpretation of the additional terms.
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APPENDIX. GOVERNING EQUATIONS FOR THE SPHERICALLY SYMMETRIC PROBLEM

The strain-displacement relations are wnriten as

C, = iW,

UC. -l C. - -

-r
C.=

= c, -e-#)

where u is the radial displacement (Fig. 3(b)), c, and co the radial and circumferential normal strains. . the
volumetnc strain, and e, and ev the deviatoric strains.

We define the modified quantities ,. 4 4, i_ and i, in a way similar to eqn (9a). In particular, for the
volumetnc strain

The incremental stress-strain relations are given by

4+,= k4,- -26.

S= K4 + 2G..

The shear rnoduli ( and G are assumed to be constant, while the tangent bulk moduli k and K and the stress-
strain reiations (a. 4o) and (r. t) are illustrated in Fig. 2. The total stress is given by

S, = (I -c)s,-c,

Sn = (n-c)a,.re ,.

In the numerical applications, the shear moduli ( and G are taken to be negligibly small (I0- ).
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Abstract-in localization problems involving strain-softening, localization limiters have been introduced
to provide solutions where the deformation concentrates in regions of finite size. Limiters are here classified
as integral. differential and rate limiters. The character of the governing partial differential equations is
studied for strain-softening models with and without limiters. It is shown that. in simple cases.
strain-softening causes the governing equations of statics and dynamics to lose respectively ellipticity and
strict hyperbolicity. With the addition of a differential limiter, the dynamic equations change from
hyperbolic to parabolic. Differential and integral limiters are shown to have similar effects on supenm-
posed waves, with an unbounded growth occurring only for wavelengths greater than the characteristic
localization bandwidth. Example solutions are given for one-dimensional models in statics.

I. INTRODUCTION of the localization band and the critical load for
Solutions of problems involving strain-softening which localization may be triggered but does not
material laws are fraught with serious difficulties, provide any length parameter for the subsequent
both from mathematical and numerical points of behavior; in this respect, it is somewhat different from
view. In dynamics, these difficulties were illustrated the dynamic case, where a localization zone (albeit
in [I] using a simple one-dimensional wave propaga- reduced to a single point or linc) appears in the
tion model: an elastic wave propagating in a bar closed-form solutions [3]. This difference is also
travels with a velocity proportional to ,v/(Er), where reflected in the numerical simulations. If a solid with
Er is the tangent modulus. When ET becomes nega- no imperfections is submitted to a homogeneous state
tive. as in the case for a strain-softening material, the of deformation, the numerical solution for a static
wave cannot propagate any more, giving rise to what problem will follow that homogeneous deformation
Wu and Freund (2] called a deformation-trapping path even when it becomes unstable beyond the
phenomenon: the deformation is trapped in a certain bifurcation point, provided the machine precision is
zone of the body and no information can be transmit- sufficient to prevent round-off error from triggering
ted to the rest of the material. Bazant and Be- an inhomogeneous mode.
lytschko [I] have shown by a closed-form solution To circumvent these difficulties, the concept of
that strain-softening in transient problems is charac- localization limiters has been proposed [3. 4]. The
tenzed by the appearance of infinite strains on a set essential idea of these limiters is to change the
of measure zero. This is reflected in numerical simu- character of the equations so that the region of
lations by a strong dependency of the results upon the localization does not degenerate to a set of measure
refinement of the mesh [3]. When the equations are zero. The limiters proposed in [3] and [41 were respec-
discretized. by finite elements for example, the defor- tively of two distinct types: integral limiters based on
mation will localize in the smallest discrete cell of nonlocal constitutive equations and differential lim-
material capable of representing that set of measure iters based on higher-order derivatives of the strain.
zero, namely one element in constant-strain elements One purpose of this paper is to present analyses of
in one dimension or a one-element-wide band in two the governing equations with and without limiters in
dimensions. In other words, the problem of mesh one dimension and in the case of antiplane motion in
dependency is not an intrinsically numerical one, but two dimensions. It is shown that without limiters, the
rather stems from the more fundamental loss of strict static equations lose ellipticity for strain-softening
hyperbolicity of the equations of motion [4] upon materials and nonassociated plastic laws. whereas the
attaining the strain-softening regime. dynamic equations lose strict hyperbolicity. With the

In statics, localization has been associated with the gradient-type localization limiter, the dynamic equa-
loss of ellipticity of the incremental equilibrium equa- tions change from hyperbolic to parabolic, which
tions [5]. and the existence of a bifurcation from a introduces a length scale.
homogeneous state of deformation into nonhomoge- It is also shown in this paper that the two types of
neous ones and the appearance of multiple equi- localization limiters, differential and integral. possess
librium paths. This approach provides the orientation very similar characteristics. Both limiters (i) exhibit

707
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a stable response to short-wavelength input and of incompressible hyperelastic materials by

unstable response to long wavelengths, and (2) limit Knowles [7] in statics and by Freund et al. [8] and
the localization to a width dependent strictly on the Toulios [9] in dynamics. For this problem, the dis-

length parameter. The length of the localization zone placement and stress fields are as follows:

is not sensitive to changes in the perturbation: for

static solutions, numerical results show that the gra- u= = , 0. u u, (X. V.,

dient limiter yields the same localization bandwidth
for different scales of imperfection. It is noted that a71 = OyI(x , V:), d.: = a.,t, x). (2.4)

even with the limiter the discrete tangent stiffness
does not maintain positive definiteness and the nu- In statics, the equilibrium eqns (2.1) reduce to

merical difficulties associated with strain-softening in
local materials also appear. c 3 +G:. =0. (2.5)

The paper is organized as follows: Sec. 2 deals with
the relationship between localization and change of The constitutive law reads
type in the governing equations. Section 3 classifies
the different localization limiters, and in Sec. 4. a = 2C~ij[j, -+ 2Ct:,4,

gradient approach to limiters for static problems and
its numerical implementation is described. In Sec. 5, a3 = 2C.31 41,1 + 2C:.. (2.6)
solutions are given for simple problems and the effect
of the scale of the imperfection is studied. We can make the simplifying assumption that stress

is a single-valued function of strain. This holds for

2. CONDITION FOR LOCALIZATION AND CHANGE OF elastic-plastic laws as long as there is no unloading
TYPE IN THE GOVERNING EQUATIONS at any point. We can write

To understand better the difficulties associated 3 "I . .
with the localization phenomenon and the role of the a.t = - + -

gradient localization limiter, the relation between the Cf., C.3  c: Cx1

onset of localization and a change of type of the =2C(,73 I' 2Cl3, ,l, (2.7)
governing equations is investigated.

2.1. C'hange of tpe in statics and dnamnics and a similar relation for d:. We look for solutions
that have discontinuities in , along a line F defined

We will derive for a simple problem the condition by its local normal n = (n. n2. 0). The tangent vector
for the onset of localization in statics and dynamics F at the current point is s = (S,. s:) = (- n:. n,. 0).

and relate it to the type of the system of PDEs The governing equations along F (equilibrium.

governing the problem. compatibility, directional derivatives) can be cast in
For the general three-dimensional case, the equa- a matrix form:

tions of motion are written

(2.1)= 0 1 - 1 0 ~ 0I.:

where a is the Cauchy stress tensor. v the velocity 0 0 > L:
0 0 S, S.1

vector. p the mass density and b the vector of body

forces. Subscript indices preceded by a comma denote (2.8)
partial derivatives. The body forces intervene in the
governing equation only as a forcing term. so we can This relation is of the form At j = C: for (D not to be
omit them in the study of the character of the unique, we require
equations.

The constitutive law relating the stress and strain det A = 0. (2.9)

rates is written dwhich yields in this case
d,, =C,/i,4, (2.2) - sIC.,., + s~s.( C, 1 + 5 s(CI3 + 1. (2.10)

where the tensor C,,,, has minor symmetries or in terms of the normal vector n:
= C,,, - C,,. : f is the strain tensor defined as

'C nl1:( C,2l : C:) "n :C, = = 0. (2.11)
(. :(u , - u,. (2.3)

The above can be written
The equation will be analyzed for a simple an-

tplane shear problem. but the main results remain det(n,C,,,,n,) = det(nCni = 0. (2.12)
valid for the general three-dtmensional case. The
antiplane shear problem has been studied for a class which is the classical localization condition [5. 10].
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The loss of uniqueness corresponds to the loss of t
ellipticity of the governing equations, or in other
words, to the appearance of real characteristics which
are associated with equations of a hyperbolic type.

We focus now on t ., dynamic case. The equation
of motion for the antiplane problem is

a13.1 + a23.2 = PV,,. (2.13)

The cross-derivative relations:

ill. ,  *t V4. f3., t 3.2  (2.14)

are combined with the equation of motion to yield a
system of the first-order PDEs:

[0 C1313 CY to)

0 0 0111('*.3 Fig. I. Characteristic cone for the dynamic equations.

+ [ 1V3 the principal directions of D, so that in the new

1 0 J L2J coordinate system:

o~~ =i ~ D ,' ] (2.20)+ -P 0 0] , "3 01.0 D
+10 I o tfi " (2.15)

L0 0 jL(. ., Equation (2.18) can thus be written as

This system is of the form: -p ,+D , +D " =0. (2.21)

Characteristic surfaces are cones of elliptic section, as
AUj + A:U.: + A'U., = 0. (2.16) illustrated in Fig. I: the equation of the cone passing

where A' is nonsingular. The condition for through a point (RO, j0, tq) is

O(x,. .r,, t) = 0 to be a characteristic surface of I .
(2.15) is (ll]: (t -t19)- -, (R -R°)" + -(f' -Yo0 ), (2.22)

det(A) = 0, (2.17a) where

where /ID\ J _
=e ffi )and c, fi= . (2.23)

A = AO. + A , .2 + A'O.,, (2.17b)

As D loses positive definiteness, say, for example,
which yields here: D, remains strictly positive and D2 approaches zero,

the cone collapses to a plane surface. Considered as
-P' +(C 3 + C:i 3 )*.1G. 2  a function of the variables (f, r), the system loses

strict hyperbolicity, or. equivalently, real waves no
+ C,31 30-' + C, 3.30 ] = 0. (2.18) longer propagate in every direction (in our case they

stop propagating in the ./f-direction). It is therefore
The extra factor 0., in (2.18) corresponds to a seen that here the condition of strict hyperbolicitv of

characteristic surface with zero velocity and is a result the system of governing equations and the condition
of introducing an additional dependent variable by of strong ellipticity are equivalent.
choosing strains and velocity as the dependent vari- It should be pointed out that when a viscoplastic
ables 12]. To understand better the meaning of constitutive law is used. the equations of motion do
(2.18). we define the constitutive matrix D such that not lose hyperbolicity. This is readily seen by observ-

ing that for viscoplastic models the rate constitutive

D,, = C, (2.19) relation is wntten as

and select a new coordinate system (T. ") defined by d., . C.,, - R.(u). (2.24)

CAS 33'--G

______________________________ -. - -
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where C.j, is the elastic tensor and the inelastic part An example of a material model where localization
is embedded in the term R,. The type of the system occurs for positive h can be found in [13].
of governing equations is determined by C,,,, so that
it remains strictly hyperbolic, the inelastic effects
appearing only as a forcing term. 3. LOCALIZATION LIMITERS

2.2. Relation between strain-softening and locali:ation Localization limiters can be classified as follows:
for elasto-plastic materials (I) nonlocal or integral limiters, where the strain

The rate constitutive relations for an elasto-plastic measure includes an integral of the deformation over

material are written in tensor fori as: a finite domain [3];
(2) differential limiters, where the strain or stress

C, :P measures include derivatives of order higher than
d= C:i= C' : i Q: :, (2.25) one [4.14-17]; and

C P (3) rate limiters, where a time dependence is built
into the equation [18].

where P and Q are symmetric first-order tensorsinotequin[1]wheinrepecandelyre seticn oftoer steors The rationale underlying the nonlocal limiters is
giving respectively the direction of the plastic defor-

that a classical local theory does not take into
mation and the outer normal to the yield surface, h
is the rate of hardening, and C is the elasticity tensor: account the influence of the length scale associated

with a rapidly varying strain field on the stress

= + + distribution, an essential part of localization.
In the case of a one-dimensional rod with strain-

and ;. and G are Lame's constants. The case P = Q softening. a nonlocal limiter is obtained by defining

corresponds to plastic normality: P = Q corresponds the stress field a(x) as a function of a nonlocal strain

to a nonassociative flow rule. '(x) [3]:

We consider again the antiplane shear problem and (x) ['(.)] (3.)
focus on the relation between the localization condi-
tion and the strain-hardening modulus in the case of with
an elasto-plastic material model. For localization to
occur on a plane of normal n. condition (2.12) has to I r":
be met. We can write that condition in a set of (..) = _ (.x + s)w(s) ds. (3.2)
Cartesian axes n. e x n and e, (e. is the unit vector
in the '3' direction). With subscripts denoting compo- here [x - (1'2). x + 2)] is a domain around x.
nents in that set of axes. and for the constitutive law, w
(2.25) and (2.26). the localization condition reduces and w(s) is a weighting function. For simplicity, we

assume in what follows a uniform weighting function
w(s) = I/I.

4G"P,, The gradient-type limiter in a one-dimensional
C,= .2G - h + 4P2GQ, Q13 0. (2.27) context is given by [4]

or equivalently i'(x) -((x) + 7 .,,(x). (3.3)

h These two limiters are related through a Taylor
-= 2(2Pl3Q13 ). (2.28) expansion [4] and can actually differ by a function of

order o(/'). provided that

This expression shows that if plastic normality holds 12
(i.e. P = Q). then localization can only occur with - (3.4)
negative h, that is in a strain-softening regime. 24

whereas if normality does not apply, it is possible for In dynamic problems. the effect of the differential
localization to be triggered with a positive h. and rate limiters from a mathematical point of view

This result. obtained for the particular case of the is that the governing equations no longer become
antiplane shear problem. is in fact general. as was
shown by Rudnicki and Rice [I 3] and Rice [5]. In the elliptic with the onset of strain-softening. This can be
three-dimensional case. (2.28) can be generated to seen in a one-dimensional context for a path indepen-
(with x. # denoting components on Cartesian axes in dent material. by combining the equation of motion
(th ple land the compatibilit. condition into a system of

first-order partial differential equations:

h 'P2;.r0 a(

an Gh -PQ-0 ;. -2G P' Q0. (..29) 1 .- i 1 = . (3.51

and the conclusions derived previously remain valid. . 0 0
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where V, a(i), c and p are respectively the particle The following dispersion relation was obtained in [4] .
velocity, stress. strain and density, and subscript with the gradient-type limiter i defined by eqn 3.3):

comma denotes a partial derivative. This system is of

. the type kv=i ' (I-2k) k ='(k). (3.13)El.f

AU, + BU, = c(U), (3.6)

A similar analysis can be done for the .ntegral limiter
-7 where one of the matrices A or B. e.g. A, is nonsin- tfloli(x) =s(x) defined in eqn (3.2). Looking for

gular and c is a forcing vector. The mathematical wave solutions of the equation of motion

nature of (3.6) is determined by the roots of
the characteristic determinant det(B - ;.A) [or +lI F ' O(

'
+s)ds =0. (3.14)

det(A - ;. B) if A is singular]. In the case of eqn (3.5), 'u.,, + s) 1L .:3.14'

,tA) det(B -1) (7 'he following relation is obtained:
det(B - ).)= dtB- I)= ,,- (3.7)th

p -,p

IE~J2k .kij

so that the system becomes elliptic when '(i) < 0 kv=i - sin- k =r7(k). (3.5) .
(which corresponds to strain-softening) because the

determinant (3.7) no longer possesses real roots. The two functions -(x) and ,(k) are plotted in Fig.

When the differential limiter defined in (3.3) is 2. for values of o, and ? related through eqn (3.4).

included in the formulation, a modified system of In (4] the plot of y(k) was interpreted to mean that

PDEs is obtained: [_

000 0 1 0 0 0 ,]
[ 00 0 WI 0 0 0 1 w 0

0 0 0 0 'J + 0 1 0 0 (3.8) .

0 0 0 - 1 a , t. 0 0. 0 .

Lj 10]jL.P
where wm i a ., and w, = £.,. The characteristic deter- the growth in short-wavelength inputs susceptible to

minant develop in the narrow localization zones is bounded

when the limiter is present.

det(A - ,, B) (3.9) It is interesting to notice that for small values of 2. 4

P the expression of '(k) can be expanded. and. using

possesses four real roots, all equal. irrespective of the (34).

sign of 01 ),. so that the system is parabolic. It should
be pointed out that, when a rate-type limiter is used (k) JJE -- .

via a viscoplastic material model, the governing .

equations remain hyperbolic [ 8]. , k -

To understand better the behavior of the integral Z_ - k (I 6(I - Xk) = (k). (3.16)

and differential limiters, a Fourier analysis by the lP (6 2)

method of frozen coefficients is useful. In this analysis
a displacement disturbance ju is applied to the body, 7 (k)
and the material is considered to be in a strain-soft-
ening state over an interval [x,, xj: Ite .- ter

6a(x)= -IE, l&(x) for x in [x,. x:], (3.10) - ' "

when the tangent modulus E, < 0 is assumed con-

stant. We then look for positive wave solutions of the
form

,u(x. ) - .4e" (3.11)e".

for the equation of motion for 6u: - t
k L -

u , at o, (x), = 0. (3.12) Fig. 2. Linearized analysis: "'tx i tgradent-type limiter) and

pk) (integral-tve miter) vs waveength k.
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A perturbation analysis [41 reveals that, when the = -Ldifferential limiter defined in (3.3) is used. the width
of the zone in the strain-softening regime varies with (O

the square root of the parameter . Numerical simu- LC
lations confirmed this type of dependence. and for the = f Cr( - ZA( O , ) dx (4,4)

integral limiter the% yield a zone size proportional to
the averaging length / [3]. as can be expected from where Cr is the tangent (elastoplastic) modulus. The
relation (3.4). Thus both localization limiters prevent introduction of the second-order derivative in the
the growth of waves of the scale of the localization strain expression would make impossible the use of
bands %hich are generated by the presence of strain- standard finite elements with a linear interpolation
softening. for the displacement field. However, to examine the

As far as static problems are concerned, the only performance of the method, we use simple linear
attempts to derive closed-form solutions using lim- displacement finite elements and compute the second
iters known to the author are due to Schreyer and derivative of the strain in element e by a centered
Chen [14]. Coleman and Hodgdon [15] and Aifantis finite difference approximation. For a one-dimen-
and co-workers [16. 17]. In the former approach, sional problem, this results in the following expres-
higher-order terms are included in the evolution sion when uniform (constant Ax) meshes are used:
equation of the flow stress, and in that sense it is quite
similar to the work of Schreyer and Chen. In U -2(, +,_

Coleman and hodgdon [15]. a second-order strain ) Ax
gradient is added directly into the constitutive
equation without modifying the yield function. The -d,_ + 3d,* - 3d,., + d_ (.,
common feature of these approaches is that they A.V(
make the stress field dependent in some way on the
spatial derivatives of tne strain field. In the next where d_ for i = 1. 2 are the nodal displacements for
section. we choose the method presented in [15] to element e.
develop a finite element formulation. For the formulation of the elementary tangent

stiffness, this results in adding to the usual (2 X 2)

4. GRADIENT APPROACH TO LOCALIZATION element tangent stiffness an enlarged (2 x 4) matrix

IN STATICS derived from (4.5)

We follow the approach of Coleman and Hodg- ft

don [15] but do not limit our formulation to rigid J AaO(.) dx
plastic materials. The expression for the stress is given
by f ['4 & Cr - xA( , ] dx

0(t) -(4.1)

where 0(f ) is the usual elastoplastic constitutive law = (6d,, dd,j Br Ad, .

(stress-strain relationship) and 2 > 0 is a coefficient 0

having the dimensions of a force.
To use the finite element method, a weak (varia- Ad, 1

tional) form of the equilibrium equation is wntten - 2Br - 1 3 -3 11 Ad,, dx

Ad '
I = J (.r) dx - drf" = 0. (4.2) Ad_... .

S= drK [Ad, , Ad,, Ad,.: Ad,.j,.jr. (4.6a)
The displacement field is approximated by

where
u(x. t) - N (x d(t), (4.3) Kl,Kr Br(Cr[0 B,.: 0]

where d is the vector of nodal displacements. Equa- 0
uon (4.2) is a nonlinear equation resulting from the 2[- I 3 - 3 ])dx. (4.6b)
nonlinear constitutive relation. To develop a tangent
stiffness matix, we consider a lineanzation of 4.2), In the pre,-u5 expression. B is the gradient matrix.
assuming that the external forces r' are independent its dimensions are I ' 2 for tvo-node constant-strain
of the current displacement d: elements in one dimension The discrete equilibrium

. equations are then deduced from

AI--AI=0. (4.7)
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which can be written. after assembly of the elemen- 0(e)
tary tangent stiffness matrices K - into a global tan- *

gent stiffness matrix Kr., ,

6idrKr Ad - 1 dr 8'ax I d.v - 6drf~L = 0

for every 6d, (4.8)

so that the iterative displacement vector Ad is the Unloading :

solution of a linear system of equations: _
KAd -fet f t (4.9)

Fig. 3. Traction curve t -0(). Young's modulus E 200.
where yield strain f, = 0.05. t = 0.3, parameter controlling the

convexity 60 = 0.I1. In enclosed box. problem description:
rod length 2L = 10. 40 nodal points.

f lo= Ba(. ") dx. (4.10)

To test the effectiveness of the localization limiter
As can be noticed from the expression of KIT in eqn and the solution strategy, we consider the problem of
(4.6b), the tangent stiffness matrix associated with the a one-dimensional rod, subjected to equal and oppo-
system is not self-adjoint and. moreover, it is not in site loading at its two ends, as illustrated in Fig. 3.
general positive definite. When Cr loses positive One node in the mesh is held fixed, to prevent rigid

definiteness, this result is expected since the governing body translations. To trigger the appearance of a

system of equations even with the limiter does not nonhomogeneous strain distribution, a small imper-
possess a unique solution. This is readily verified by fection is introduced. In the present example, this was
noting that, when the prescribed displacement d at accomplished by making the cross-section of the
the two ends of a perfect rod of length 2L is bigger center element 1% smaller than the cross-section of

than L .,, (see Fig. 4). the homogeneous strain field all other elements.
d/L still satisfies the relevant equations (4.2), so at Numerical studies of this problem were conducted
least two solutions exist. This is also true for an based on the localization limiter defined previously in
integral limiter. eqn (4.1). which in one-dimension reduces to 1

S. NUMERICAL EXAMPLES a = 0(f) - 1,. (5.3)

When conducting the numerical simulations, it was The elasto-plastic strain-stress law considered is illus-
noticed that the introduction of the localization did trated in Fig. 3. It consists of a linear elastic part. and
not remove completely all the unpleasant features an exponential branch including a strain hardening
present in calculations involving strain-softening ma- portion followed by a softening one. At any point the
terials. More precisely, when the strain-softening unloading is elastic with Young's modulus E. The
regime is incipient, the Newton-Raphson procedure physical parameters used for the calculation were:
often results in iterations that oscillate between two Young's modulus E - 200. yield strain c, = 0.05.
or more states and fail to converge to one equilibrium t, = 0.3. exponential branch:
state. From a numerical point of view, this is linked
to the tangent stiffness KT not remaining positive (1 +6) -"-

definite. In [19]. a remedy for this difficulty was ()=E ( e (o5
proposed, the problem is posed as the minimization
of the length of the residual vector: where

Minimize: 9=rr(d)r(d), (5.1) 0( Ei o. (S.5b)

where
The parameter 6, controlling the convexity is taken to

r(d) = f" - f' t. (5.2) be equal to 0.11.

To solve this problem. the line-search technique
and requires F = 0 at the minimum, combined with the arc-length method with a lin-

This provides a more %ell-behaved problem for the earized constraint equation described in [19] was
line-search procedure. and the rate of convergence of used. It was first checked that without introducing the
the Newton method is improved substantially. The localization limiter, that is. for i = 0. the deformation
method was also adapted in [19]. to combine it with localized in the element with imperfection. irrespec-
arc-length procedures. tive of its size, whereas all other elements unload



714 T. BELYTSCHKO and D. LASRY

e load
20.:

2.0o, Computations fail here f
no line searches are used

1. 5c

10.0

3.5 S -r.t a .3

L0.300.

0. CO.T 0.0 0 1.0 - 0.6 .2 . 4 .

3.3 2.0 4 .3 . .1 1.0_ displacement
K Fig. 5. Load-displacement curves for different values of the

Fig. 4. Strain vs spatial coordinate profiles at four different parameter 2.
load steps with higher-order term limiter (2 = 0.5).

are reported in Fig. 5. They exhibit a milder negative
slope with increasing 2. It should be pointed out that,

elastically. In a load-displacement curve, a sharp without the useof the line procedLre described above,
decrease is observed once strain-softening is attained, the Newton-Raphson procedure fails to converge
and even a snap-back behavior can be observed, near the critical point.
which could not be captured with a pure displace- As pointed out previously, a small imperfection is
ment control strategy. introduced in the center of the rod to create a

Calculations were then conducted with the local- nonhomogenous strain distribution. The sensitivity
ization limiter defined in eqn (5.3), for several values of the results to the imperfection is reported in Fig.
of the parameter z. The strain distribution along the 6 for several values of . Imperfections of different

rod for various load levels is given in Fig. 4. These 6. fo ,,,eeal v a e of I v i ns o s-ee -

stran-pofies re erycloe i shpe o toseob-lengths t,,, are obtained by giving a smaller cross-sec-
strain-profiles are very close in shape to those o- tion to several elements around the center of the rod.
tained by Coleman and Hodgdon 1151 in their study In Fig. 7, strain profiles for a given value of a and

of the effects of the localization limiter (5.3) on

strain-localization for a rigid plastic material with a corresponding to the same end displacement are

parabolic law. Essentially, a finite localization zone reported for different values of th It can be ob-

emeges prctcaly cnsantin ize i whch heserved from Figs 6 and 7 that the size of theemerges, practically constant in size, in which the localization zone is a function of 2 but is practicallystrain increases but rem ains bounded, whereas in the i s n ii e t h n e n t ei p re t o i e

rest of the rod. the material unloads elastically. In the
finite element calculation, this localized zone spans a
few elements of the mesh. The size of the zone is 6. CONCLUSIONS
directly related to the value of %. Localization limiters can be classified as nonlocal.

Load-displacement curves for various values of 2 differential and rate limiters. A Fourier analysis of the

3-

Imefcionet o antd %

aa

'3
.C

0

1mpofeasiof IIIPIS Emp

Fig. 6. Sensitivity of the band size to imperfection length (,,.For all point mesh of 80 elements.
imperfection magnitude 2.



Localization limiters for strain-softening 715

E Scientific Research under contract no. F49620-87-C-0030
3.00 - and the support of the Army Reseach Office under grant no.

DAAL03-87-K-0035 to Northwestern University are also
. imp. '  gratefully ackno% 'edged.

2.25 .

REFERENCES

I. Z. P. Bazant and T. Belytschko. Wave propagation in

t. so. strain-softening bar: exact solution. J. Engng Mech.
Div.. ASCE 111, 381-389 (1985).

2. F. H. Wu and L. B. Freund. Deformation trapping due
to thermoplastic instability in one-dimensional wave

0.75- propagation. J. Mech. Phys. Solids 32. 119-132 (1984).

3. Z. P. Bazant. T. Belytschko and T. P. Chang. Contin-
uum theory for strain-softening. J. Engng Mech. Dir..
ASCE 110, 1666-1692 (1984).

0.00 , _4. D. Lasry and T. Belytschko. Localization limiters in

0.0 2'. 0 4.0 6. 0 8 0 transient problems. Int. J. Solids Struct. 24, 581-597

x (1988).
5. J. R. Rice. The localization of plastic deformation. In 4

Fig. 7. Strain profiles for different values of the imperfec- Theoretical and Applied Mechanics. Proc. 14th lnt
tion length ?,,, for the same end displacement. Mesh of 80 Congr. Theoret. Appl. Mech. (Edited by W. T. Koiter),

elements, localization limiting parameter 2 =0.3. pp. 207-220. North-Holland. Amsterdam (1977). A
6. T. Belytschko. J. Fish and B. E. Engelmann. A finite I

element with embedded localization zones. Comput.
wave-propagation problem shows that the introduc- Meth. appl. Mech. Engng 70. 59-89 (1988).
tion of nonlocal or differential limiters lead to govern- 7. J. K. Knowles. The finite antiplane shear field near the

ing equations where short waves, which are likely to tip of a crack for a class of incompressible elastic solids.Int. J. Fract. 13. 611-639 (1977). "

develop with the onset of strain-softening, have a 8. L. B. Freund. F. H. Wu and M. Toulios. Initiation and

bounded growth. In dynamic problems. strain-soften- propagation of shear band in antiplane shear deforma-
ing causes the governing equations to lose strict tion. Proc. Int. S.rmp. Plastic Instabilit., Considere

hyperbolicity; it was shown, for example. that they Memorial. Paris. Sept. 1985. pp. 125-134. Presses de

have become elliptic in at least one direction for the IlEcole Nationale des Ponts et Chaussees. Paris (1985).
hantipve rolm Wi th athle e die-te ora 9. M. Toulios. The wavefront induced in a homogeneously
antiplane problem. With the gradient-type rocaliza- shearing solid by a localized material imperfection. Q.
tion limiter. the dynamic equations change from J. appl. Math. 43, 225-235 (1985).
hyperbolic to parabolic for the one-dimensional case. 10. R. Hill, Acceleration waves in solids. J. Mech. Phys.
The character of the amplification spectrum of the Solids 10, 1-6 (1962).
integral and differential limiters is similar and they II. R. Courant and D. Hilbert, Methods of Mathematical

Physics, Vol. II. Interscience. New York (1962).
become identical in the limit as the magnitude of the 12. R. 1. Clifton. A difference method for plane problems
parameter governing the limiter goes to zero. in dynamic elasticity. Q. J. appl. Math. 25, 97-116 .

The differential localization limiter proposed by (1967).

Coleman and Hodgdon [15], based on the introduc- 13. J. W. Rudnicki and 1. R. Rice. Conditions for the
localization of deformation in pressure sensitive dilatant

tion of the second derivative of the strain in the stress materials. J. Mech. Phivs. Solids 23. 371-394 (1975).
expression, was implemented in the context of static 14. H. L. Schreyer and Z. Chen. The effect of localization
problems. Numerical studies show that it allows for on the softening behavior of structural members. In

the development of a localized strain zone spanning Constitutive Equations: Macro and Computational

several elements of the mesh. However, the addition Aspects (Edited by K. 1. William). pp. 193-203. ASME.
New York (1984).

of the limiter does not guarantee positive definiteness 15. B. D. Coleman and M. L. Hodgdon. On shear bands
of the tangent matrix, in ductile materials. Archs Rational Mech. Anal. 90,

The differential limiter is not sensitive to the mag- 219-247 (1985).

nitude of the imperfection which triggers localization. 16. N. Triantafllidis and E. C. Aifantis. A gradient ap-
proach to localization of deformation. i. Hyperelastic

For this reason, differential limiters are most suited materials. 1. Elast. 16, 225-237 (1986).
for modeling phenomena where the size of the local- 17. H. M. Zbib and E. C. Aifantis. Or the post-localization
ization bands is relatively consistent. In fact, the of plastic deformation. 1. The e% ution of shear bands

localization bandwidth is governed by the a parame- in plastic materials. Michigan Institute of Technology,

ter, the coefficient of the higher-order term. This MM Rep 14 (1987).
18. A. Needleman. Material rate dependence and mesh

provides a phenomenological way of choosing i on sensitivity in localization problems. Comput. Meth. appl.
the basis of experimental results. Mech. Engng 67. 61-85 (1988).

19. T. Belytschko. D. Lasry and T. Lodygowski. A
Acknow ledgements-The support of the Office of Naval modified Newton procedure for post-bifurcation analy-
Research Under Award N00014-85-K-0458 is gratefully sis. as in strain-softening. Int. J. Numer. Meth. Engng
acknowledged. The support of the Air Force Office of isubmitted).



APPENDIX F4

Computers and Structures,

submitted June 1989.

A General Finite Element Procedure for Problems
with High Gradients

by

J. Fish and T. Belytschko

Northwestern University

Evanston, Illinois 60208, U.S.A.

Abstract

A unified approach for treating finite element solutions with embedded, enriched

and superimposed fields is presented for large deformation problems. These methods are

aimed at problems with high gradients. The unified approach allows us to combine various

techniques developed previously by either merging them in separate domains, or in the

same domain but in different directions. Results are obtained for a viscoplastic bar with

shear bands.
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1. Introduction
Much attention has been devoted in the past several decades to enhancing finite

element solutions in regions of high gradients. In problems such as material failure due to

localization and crack propagation, or shocks in fluid dynamics, the regions of high

gradients are of several orders of magnitude smaller than the size of the domain of interest.

Therefore, if a uniform finite element mesh is used, tremendous numbers of elements

would be needed in order to accurately resolve the structure of the fields.

In order to improve the solution, a computational model must be enriched in the

regions where high gradients are indicated by the solution. One procedure for enrichment

are the h- and p- adaptive [1-4]. In the h-method, the finite element mesh is refined by

keeping the elements of the same order and subdividing them, while in p-method, the same

mesh is retained but the order of approximation is increased; it is possible to combine both

into an h-p procedure. The p-method has an advantage over the h-method especially if
hierarchical [5] or spectral [6] elements are used. An advantage of hierarchical elements is

that the degrees of freedom and stiffness matrix of an element of order p are the subset of

those for element of polynomial order p+l. In [6] the displacement field within each

spectral element was represented as a higher order Lagrangian interpolant through
Tchebysheff collocation points, and an exponential rate of convergence was obtained.

While high resolution of the fields can be obtained with both hierarchical and

spectral elements, many degrees of freedom would be needed when the high gradients

region is skewed in relation to the mesh. The techniques developed in [7-11] take

advantage of this by enriching the approximation in the direction indicated by the solution.

In [7-9] the shape of the strain field is assumed to be known a priori, and therefore it is
possible to obtain a good estimate of the strain field with a modest increase in the number

of unknowns. In [10,11] the field was considered completely unknown and interpolants

able to resolve the field with high gradients in a single direction were used. A piecewise

constant strain interpolation scheme has been developed in [10], while rapidly convergent

spectral interpolants were used in [ 11].

In this paper a unified approach, which combines the ideas presented in [7-11] is

developed in context of large deformation problems. The embedded element technique

developed in [7-9] has been modified, so that the methods developed in [7-11] can be

treated simultaneously. The unified approach allows us to combine both formulations by

either merging them in separate domains, or in the same domain but in different directions.

The outline of this paper is as follows. In section 2, the superimposed fields are

described with particular emphasis on the unifying the of techniques presented in [7-11).
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Section 3 describes the compatibility condition which is needed to enforce homogeneous

boundary conditions on the higher order deformation field. Section 4 gives the

development of the discrete equations by either the displacement method or the Hu-

Washizu variational principle and the equivalence between the two variational principles is

discussed. Section 5 examine the convergence properties of the spectral methods and
compares them to the finite-difference method. Linearization procedures for general

nonlinear analysis are presented in Section 6. Finally some numerical examples of studies

of shear banding are presented in Section 7.

2. Description of the method

In this section a unified approach in constructing finite element procedures for

problems with high gradients is presented. This approach allows us to treat a variety of

formulations presented in [7-11] together with some attractive new possibilities in a

uniform manner. The common feature to all the techniques is that the deformation field is

decomposed into two parts:

u = u° + uH (2.1)

where u0 e 2 is a lower order (macro) deformation field defined over the whole problem

domain and is approximated by a CO finite element interpolants

u9 = NA dA A=1,2 ..... NHS and i=1 .... NSD (2.2)

and uH e OH is a higher order (micro) deformation field which is defined on fi2H - the

regions where high gradients are indicated by the solution (see fig. 1). Here dA are nodal

displacements; lower case subscripts indicate spatial components and NSD is the total
number of space dimensions; upper case subscripts A,B,C indicate nodal degrees of

freedom and NDG is the total number of nodal degrees of freedom. Standard tensorial

notation is used with summation over the repeated indices. Note that in [7-9] the fields are

defined within each element rather than on a superimposed band.

The condition that a higher order deformation field is subject to the homogeneous

boundary conditions

uH = 0 on rHOtU u (2.3)

is crucial for the simplicity of the method since it allows the treatment of complex

boundary conditions u" by the standard CO finite element interpolants
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u° -- u *  on Fu (2.4)

where I' is the boundary of the problem domain Q , which consists of the prescribed

displacement boundary Fu and the prescribed traction boundary Ft. F7HO is the boundary of

2H , which is not included in F.

In the following, attention will be focussed on the construction of interpolants for

the higher order deformation field. It is of advantage in the approximation of uH to exploit

our knowledge of the higher order strain field . For shear band localization problems,

which are used here to demonstrate the essential features of the method, the structure of the

"micro" strain field can be partially determined from a local bifurcation analysis[12-14],

which yields

J= Tij (i 2) Y (X1) (2.5)

where Tij (X2) defines the components of the "micro" strain field, which can vary in the

direction x2 - the local coordinate axis aligned parallel to the localization band, and y (x) is

the magnitude of the "micro" strain field with I1 being a local coordinate axis in the

direction normal to the band. It is tacitly assumed that the structure in the X2 direction is less

rich so that it can be adequately dealt with by the lower order strain field obtained from CO

finite element interpolants

0 0 ~ d 26
ii -N(iA.j) dA = BijA dA  (2.6)

The structure of Tij (X2) was extensively discussed in [ 10] and is given by

Tij = Sym (mi nj) (2.7)

where n and m represent the direction of the band and the localized strain field defined

from a bifurcation analysis [ 12- 14].

The numerical techniques developed for the purpose of resolving deformation

fields with high gradients [7-11] can be classified into two major categories, depending on

the discretization scheme which is used to approximate Y field. In the first category,

advantage is taken of the fact that the shape of the "micro" strain field is known a priori, so
y can be expressed as a nonlinear function of several parameters a. For example, on the

basis of what is known in one-dimensional solutions, the shape of the interpolated "micro"
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strain field in rate-dependent materials can be assumed of a cusped structure (fig.2a) given

by

_ \2
_ - a1  (2.8)

1 + a3

while for rate-dependent materials it can be assumed to be a C-1 plateau with the higher

value in the localized region (fig.2b)

a 2  for X- > b/2 (2.9)

a1 for 1 x-< b/2

Note that for rate-independent materials, the width of the shear band b (or the hinge line in

plates) cannot be determined from the solution, since the governing equations change type

from ellyptic to hyperbolic. This approach has been used in [7-9] in the context of rate-

independent materials and will be referred here as an embedded formulation. The

embedded technique is very useful if the structure of the strain field in the high gradients

region is known a priori, since it allows a good estimate of the magnitudes of the strains to

be obtained with a modest increase in the number of unknowns.

In many problems involving complex micro-mechanical behavior, the deformation

field cannot estimated a priori, and therefore the shape of the embedded strain field cannot

be preselected. In this case, the "micro" strain or displacement field must be considered

completely unknown and an interpolant able to accurately resolve fields with high gradients

must be used. In [11] spectral interpolants were used to approximate the "micro" strain

field

Y = cD, (i)a I=I,2..NHS (2.10)

where I are the higher order (spectral) strain interpolants and a, are the spectral degrees

of freedom; upper case subscripts I,J,K indicate spectral degrees of freedom and NHS is

the total number of spectral degrees of freedom. This choice of approximation originates

from the desire to combine the generality of the finite element method with regards to

complex shapes and boundary conditions with the exponential convergence of the spectral

method.
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For certain class of materials, such as slightly rate-dependent materials, the use of

piecewise constant strain interpolants might be of advantage, since fewer integration points

in the direction normal to the band are needed. This possibility has been considered in [10].

For the purpose of classification we will refer to [10,11] as an enriched

strain/displacement finite element technique.

In order to simultaneously treat both embedded and enriched formulations the

higher order strain interpolants will be defined as follows

= a(2.11)

Consequently the variation and the rate of y are given by

Sy = 0 1 8a, (2.12a)

and

-Y = 01 ai  (2.12b)

With this definition of Sy and y the major difference between the enriched and embedded

formulations is that embedded form,,lation (DI is a nonlinear function of unknown

parameters a, (or the al's are fixed a priori), while with enriched formulation 0I is

constant with respect to time.

Once the structure of "micro" strain field has been defined (2.5-2.10), one can

obtain the expression for uH by integrating (2.5) in i1 direction and transforming the

resulting expression from the x into the x system. The resulting higher order

displacement field is given by

X1

S=mi J'y (s)ds (2.13)

-h/2

Homogeneous boundary conditions on Fro (2.3) are satisfied if y is subjected to the

following constraint equation

h/2

fY (x1) dil -0 (2.14)

-h/2
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which in the following will be regarded as a compatibility condition.
H HNote that the minimal continuity requirement for ui is Co, while y or Eij need to

be C-1. All the techniques presented in [7-11] can be further classified according to the

continuity of the "micro" strain field. Various possibilities are summarized in fig.3. For

example the C-1 embedded formulation, which was used in [7-9], corresponds to a C-1

field with its shape preselected a priori; the C-1 enriched formulation with piecewise

constant strain interpolants was used in [ 10], while a CO enriched formulation with spectral

basis functions was employed in [11]; a CO embedded formulation is another promising

possibility, since it allows us to obtain a good estimate of the high-gradient strain field by

adding only a single unknown for the case of rate-independent solid or two unknowns if a

rate-dependent material is considered.

3. Compatibility condition

As mentioned previously, a compatibility condition (2.14) is required to impose the
homogeneous boundary conditions on FHO (2.3). In this section we will review some of

the techniques presented in [7-11] to satisfy this condition.

With the embedded formulation it is usually possible to express one of the

unknowns in the "micro" strain field as a function of others, so that the compatibility

condition (2.14) is automatically satisfied. For rate-independent materials[7-9] this yields

a2 = a, (h -1) (3.1)

A similar expression can be obtained from equation (2.8) combined with (2.14) for rate-

dependent materials

a.2  at ( h2a - (3.2)tan'l(h/2a
3)

Several techniques can be used to impose compatibility with an enriched formulation,

depending on how the y field is discretized. If a spectral approximation of Y is used,

compatibility can be satisfied by making each of the basis functions satisfy the

compatibility condition

h/2

fDI (RO dR, = 0 (3.3)

-h/2
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Equation (3.3) can be systematically satisfied by constructing spectral basis functions 0,

as a sum of one of the polynomial series T, (or Fourier) with some constant C,

( I = TI + C1  (3.4)

where C1 is chosen so that equation (3.3) is satisfied

h/2

C=- I T (i 1 ) dit (3.5)

-h/2

For example, if T, represents a Fourier series (only cosI terms are used because of

symmetry) than

C, = 0 (3.6)

whereas if a Tchebisheff polynomial is used

C, 0.5 [(-1) + 1] I=2,3.... NHS and C1 =0 (3.7)
12 - 1

In case of piecewise constant approximations of y [10], it is convenient to define an

additional function a(i 1), which is related to y(x) by

'AR) = aa (3.8)

This can be discretized by

= a + " a , 
(3.9)

AX't

Using the above definition of y we can integrate equation (2.13) to obtain the following

expression for the higher order displacement field

u = mi a(xl) (3.10)

and the homogeneous boundary conditions on FH0 are satisfied if
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a1 = a s =0 (3.11)

We will refer to equations (3.1), (3.2), (3.3) and (3.10) as a discrete compatibility

condition.

4. Variational framework

In order to obtain the discrete equilibrium equations, a weak (variational) form of

the governing equations is used. In this section, it will be shown that under certain
conditions both the displacement method, which was used in [ 11], and a Hu-Washizu
variational principle employed in [7-10] lead to identical discrete equilibrium equations.

We first consider the principle of virtual work, which serves as a vehicle for the
finite element displacement method. This principle states that for a body 0 enclosed by
1= u + Ft if

ueU,U = {ulueCO,u=u* on Fu} (4.1a)

and
ueU 0, Uo = {Su 8ur CO, u=O on ru} (4.1b)

then if

fJu(i,j) Gj(u) dil = fBui ti dE + f8ui bi d2 for V Sue Uo (4.2)

the equilibrium and the natural (traction) boundary conditions are satisfied.
Substituting interpolants (2.2), (2.5) and (2.6) into (4.2) we obtain

dA .fBijAcij dQ + Sal JTij 0, Oij dQ =

SdA [ fN ti dr + fNiobi dU ) + Sal [ fNH ti df + JN,' "bi dn2 (4.3)
rt Q rt Qjj

We consider the following conditions, regarding external forces applied on the

domain where the high gradients are indicated by the solution

bi=0 on QH (4.4a)

ti = 0 on 1"-0 (4.4b)
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which exist in many practical applications, such as localization problems where the Q2H is

placed along the localization band or in fracture mechanics applications where "2H

encompasses the crack tip.
Equating the coefficients of SdA and 8a , we find that the discrete equilibrium

equations are as follows

ext int
fx fA (4.5a)

qI ' 0 (4.5b)

where

= JBiAamjd£2 Q(4.6a)

ext 0r
=X JNmpti dE + JNiAbi d£2 (4.6b)
F-t

q, = fN ij)aiJ d£2 = I (xi) Omn d£2 (4.6c)

CIH DH

and

Crmn = m~a" n (4.7)

Equation (4.5a) is an equilibrium condition at the nodes. Equation (4.5b) pertains

to equilibrium of the higher order fields, and is a weak statement of the fact that the

component amn of the stress field is constant, or in other words, its jump across the shear

band is equal to zero (since (DI does not contain the constant field).

Next we consider a Hu-Washizu variational principle, which states that if

ue U (4.8a)

oeS, S = {Oo eC-} (4.8b)

E E, , = {EIE C- (4.8c)
and

sue Uo, 86e S, SE E (4.9)

then if
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fJcij Zj(C) dQ - f8ui ti dI - fsui bi di2
r t Q

+8 foij ( ij - u(ij))dO = 0 for V 5uE U, 8a S and &E (4.10)

the equilibrium, strain-displacement and constitutive equations together with natural

boundary conditions are satisfied. Here I is the stress tensor obtained from the constitutive

function, which may be both time and path dependent and is obtained from the interpolated

strain field.

Substituting interpolants (2.2), (2.5) and (2.6) into (4.10) we obtain

,70
8dA JBijAaij dQ + 5a, foI amn dK2 -

92 f iH

&SIA( fN2Ltid " + fNibid}+ 6 famn ydM = 0 (4.11)
l't Q Q

Then if Omn is discretized by

(Imn = StunI sI  (4.12)

For certain low order elements, the stress interpolants can be taken as a combination of

constants and selected linear terms. In that case, as shown in [7], the last term in (4.11)

vanishes due to the compatibility condition (2.14), and the resulting discrete form is

identical to the one obtained from the displacement method under the assumption (4.4).

Note that the embedded formulation presented in references [7-9] differs from the

approach adopted here because of the following:

1. In [7-9] no variation on the parameters in the strain field has been taken. Instead

an internal equilibrium condition has been stated using a collocation method

ni =ij -constant for j =I-NSD (4.13)

Furthermore, traction continuity is satisfied for all components, so that the components

of m, which are initially determined from a local bifurcation analysis, can change as the

problem evolves. With this approach the number of Gauss points must be greater or equal
to the number of a. For example, in the case of an embedded formulation used in the

context of rate-independent materials, a single unknown in the strain field (after

compatibility has been imposed) can be determined using a one-point integration
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scheme.This scheme combined with stabilization [15] is also useful to avoid locking due to

incompressibility.

Alternatively , one could maintain traction continuity in all its components by using

Galerkin weak form

f(l ni ij dK = 0 (4.14)
Q2H

2. In order to satisfy the criteria that any rigid body motion causes zero strain, the 'y

field in references [7-9] was defined by

^f= 01 Tkl %Jk~)  (4.15)

It will be shown in Section 6 that with the unified enriched/embedded formulation proposed
here, the rigid body criteria is satisfied automatically and no additional precautions need to

be taken.

3. Due to the definition of 'y field in (4.15) and due to the combined

Galerkin/Collocation variational scheme which was used in [7-9], the resulting tangent

stiffness obtained by the linearizing the discrete equilibrium equations (4.5) is not

symmetric. This is in contrast to the formulation presented in this paper (see Section 6),
where the tangent stiffness is symmetric if an associative flow rule is used.

5. Notes on convergence

The accuracy of the embedded method depends solely on our success in anticipating

the deformation field. If the shape of the deformation/strain field is known a priori, or in

singular problems, if the order of singularity is known, the use of the embedded

formulation might be of advantage over the other techniques.

The accuracy of enriched formulation, on the other hand, depends on the type of

interpolants. In this section we will examine the rate of convergence of several spectral

approximations. The accuracy of the spectral techniques is evaluated on the basis of

comparison to a second order accurate finite-difference method, which was used in [10] to

discretize the y field.

We consider a "y(xl) field where neither y(xl) nor its derivatives vanish at the

boundaries of the spectral domain. For simplicity we assume yxj) is a symmetric function,
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so that only half of the spectral domain is considered. We first examine a Fourier

expansion, where

T, = cosK0 (5.1 a)

and
CI = 0 (5. lb)

So the yfield is interpolated by

NHS

y(0) = -aK cosKO (5.2)
K=1

where the Rx e [0;b/2] is mapped into 0 r [0;n]. Note that all the terms in the cosine

expansion, except for the one with K=O, which is a constant, satisfy the discrete

compatibility condition (3.3). This term is omitted from (5.2) since the constant field can

be obtained from the finite element approximation.

The spectral coefficients aK can be found by Fast Fourier Transform (FFT):

It

aK fy(O) cosKO dO K = 1,2..NHS (5.3)

0

This choice of basis functions does not provide an exponential convergence as

shown in [16]. In order to illustrate this we integrate equation (5.3) by parts twice:

C 1 2IC
1 2 1e cosK6 1,e cosKO dO K = 1.2..NHS (5.4)
-K2  nr K -

0

The boundary term in (5.4) does not vanish because the spatial derivative of y(e) is not

zero at the boundaries, as mentioned before. Hence, for all problems where the derivatives

of the strain field do not vanish at the boundaries, the Fourier approximation, similar to the

finite-difference method, provides only second order accuracy .

Next we will consider an interpolation of " 1) by Tchebysheff polynomials

T, (4) = coslO = cosl(cos-1 ) (5.5)

which are modified by a constant C, given in (3.7), so that yfieA s approximated by
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NHS

S ,aI (COSI + Ci) (5.6a)
I--1

where

= cose (5.6b)

and the dis rete compatibility condition (3.3) is satisfied. Here the 1 e [O;b/2] is

mapped into 4 r [-1;1]. Following [11], we will refer to the expansion (5.6) as a Modified

Tchebisheff Polynomial (MTP).
As in the Fourier series, the coefficients a, can be obtained by an FFT by

premultiplying (5.6a) by cosKO and then integrating

7C 1

aK= = fy( ) cosKO d T Y ( )TK (4) d4 K = 1,2..NHS (5.7)

-1

Note that CI does not appear in equation (5.7) because of its orthogonality to cosKe.

In order to estimate the accuracy of the MTP series we follow the same procedure
as for the Fourier series. Integration by parts of (5.7) with respect to 0 leads to

K j j7() sinKO dO K = 1,2..NHS (5.8a)

0

where

( y,() sine (5.8b)

Additional integration by parts of eq. (5.8a) yields

1 2 7-K2  csKO 1 - i - y(4) sine cosKO dO (5.9)
t 0 2  t 0

In contrast to the Fourier expansion, the boundary term in equation (5.9) vanishes because

'(-1) = y(1) = 0. We can continue to integrate equation (5.9) by parts as long as the

derivatives of y are differentiable. Since the accuracy of the method is dominated by the
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value of the first omitted coefficient, the accuracy of this method is of order r, where r is
the number of non-zero spatial derivatives of -y(4).

Although the spectral approximation with a MTP series provides a significantly

better accuracy than the piecewise constant strain interpolation [10], the computational

efficiency of the spectral approximation is not always superior. As mentioned previously,

for certain classes of materials, such as a slightly rate-dependent solid with a rate sensitivity

constant less than 0.01, the use of piecewise constant strain interpolants might be of

advantage, since it involves fewer integration points. Furthermore, if singularities or
discontinuous derivatives exist in the solution, say on rsNG, the exponential convergence

of spectral techniques is maintained only if FsING e rHo. In some cases, this restriction on
the choice of "HO may contradict our basic desire to have simply shaped spectral domains

so that the spectral approximation could be effectively applied in multidimensions. On the
othe, hand, if FSING e FH0, only second order accuracy is obtained, and therefore a simpler

piecewise constant strain enrichment might be considered.

The MTP as well as the standard Tchebysheff Polynomial provide high resolution

at the boundaries of the spectral domain. This is a very desirable property in the case of
high gradients near the boundaries. However, if the 'y field over half of the spectral
domain is characterized by the high gradients only at one end, it is desirable to map

onto e [-1,1] so that higher resolution will be obtained only at one end. This technique

with spectral interpolants is equivalent to grid refinement in a finite-difference method.

Following [11], we use the mapping suggested in [17]

tan- 1 {Rtan[-( 1)]} +1=Q(') (5.10)

where R is a free parameter. In most practical applications, R ranges from one to ten,

depending on the intensity of the strain gradients. Note that for R=I, I = .The

mapping given in (5.10) can be seen as an additional modification of the spectral
basis functions. For example, the fourth MTP term 04 (4) = (,4 I Q-'(4)) is plotted in

fig.4 as a function of 4 for various values of R. It can be seen that as R increases the

function has higher resolution at the end where the high gradients exist.
Note that if (5.10) is employed, the expression for CI is a function of R and

equation (3.7) is no longer valid for R # 1. In order to evaluate C1 for the case of R = 1

(3.5) must be integrated numerically with respect to 4'.

6. Incremental discrete eguations for large deformation
groblems
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The equilibrium equations (4.5) together with the specific definition of a
constitutive model comprise a system of nonlinear equations for the discrete variables dA
and a1. For rate-independent materials this system of equations has been solved by Newton

method in [7-9], whereas for rate-dependent materials a forward Euler integration scheme

has been employed in [10,11], where the precise definition of a tangent stiffness matrix is

of great importance, since no equilibrium iterations are made.
The objective of this section is to derive the expression of the tangent stiffness

matrix for the unified enriched/embedded formulation in context of general nonlinear

analysis. Linearization of the nonlinear equations is achieved by taking the material time
derivative of (4.5), which in case of rate-independent materials plays the role of a load

parameter.
intWe start with the linearization of fAt given in (4.5a):

d int d DN 0a Xk
fi Jlk ax i

= {a"k ( F k -il J + F kj Oij J + Fkj ij ) d!Q (6.1)

where x and X are the spatial and material coordinates, Qo and Q designate initial and

current domains, a is a Cauchy stress, F is a deformation tensor and J is a Jacobian

transformation between the initial and the current domains.
A similar expression is obtained from the linearization of q, in (4.5b), except that

N 0is replaced by NiH

To proceed, the constitutive equation is introduced, where the material objectivity is

maintained by using Truesdell rate of Cauchy stress (although other objective rates could be

used)

oii, = ij " vll Gij + vil 131j + Vjlail (6.2)

A constitutive equation which simultaneously treats rate-dependent and rate-independent

materials is employed

.Taij = Cijkl Vkl - (X Sij (6.3)
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where for a rate-independent plastic solid, Cijkt represents a tangent modulus and a = 0,

while for viscoplastic solids Cijkt is a tensor of elastic moduli, a = 1 and Sij embodies the

nonlinear response and is given by

Sij = Cijkl (ieff Rkl) (6.4)

where Rkl is a direction of the plastic flow, which is normal to the yield surface for an

associated flow rule, and ieff is an effective viscoplastic strain given by a power law

ga(eff )) M (6.5)

where 0
"ff is an effective stress, g(Ee ff) a uniaxial stress-viscoplastic strain function, m a

rate sensitivity exponent and a is a material constant.

Combining eqs. (6.1-6.3) together with the following kinematical relations

J = J v 1  (6.6)
-1 -1

Fk - Fkj vj, (6.7)

we obtain the linearized equilibrium equations

(KM KU fA +.ex (6.8)

where

KAB- JB0ADijk B0B d Q (6.9)
fd

KAj- = Bi~JADijkl Tkl (Dj d2(.0
dQ 6.0
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Ku = JTii Dijkl Tkl 0I (j dQ (6.11)

VA- fBjA Sij d (6.12)

V, = fTij Sij (I d92 (6.13)

!a

Dijkl = Cijkl + 8ik Ojl (6.14)

and BjA has been redefined by

B?. - iA (6.15)

Remarks:
1. In equations (6.10), (6.11) and (6.13) T is a function of the current values of m

and n. In deriving the linearized equilibrium equations (6.8-6.13), m has been treated as
a constant. If m is a variable, equation (4.14) needs to be linearized instead of (4.5b) and
the resulting equation will be nonsymmetric regardless the constitutive equation.

The current value of the normal to the band can be found as in [10] by
k+1 k k+1I/2

n n +Aijl vj,' At (6.16)

where

nV Fpk 8il n2 Fpi ' ns Fsk "I n*t Ftj*- -F * * -1)3/2 (6.17)(n; Fpk ns Fs*') 1  (n; Fpk ns F

The (*) symbol indicates the configuration where the localization initially occurred,
which serves as the reference frame. Details of the linearization procedure for the normal to
the surface were presented in [10].

2. For rate-independent materials ij is given by

JI-" KI(KiB) (6.18)
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and since KIB dB = 0 because of BijB dB = 0 in rigid body motion, the criteria of zero

swains in rigid body motion is satisfied by the unified enriched/embedded formulation.

7. Numerical examples

We consider a viscoplastic solid with an isotropic hardening law and von Mises

yield criterion . A trilinear stress-viscoplastic strain law with softening in the last segment
is used for g(eff) where g(e1lff = 0.006) = 300., g(E2 = 0.008) = 320., g(eff = 0.60) =

20; see eq. (6.5). Other material parameters are: Young's modulus E = 20000., Poisson's
ratio v = 0.30, m--0.05.

We consider a rectangular bar of length L=18 and width W=10 in a tension test.

Because of symmetry, only one quarter of the bar is modelled and the spectral patch is

placed over bifurcated elements as shown in fig.5a. An inhomogenity is introduced by a

triangular imperfection in the thickness of the material which is of width W/80 and results

in a maximum thickness change of 3%. This imperfection is rather large but it was

difficult to trigger the bifurcation with a smaller imperfection of this width. We study the

behavior of the proposed method as the number of spectral degrees of freedom is

increased.

A typical deformed mesh is given in fig.5b. The force-displacement curve is given

in fig.6 for various orders of spectral interpolatiors, designated by NSPEC. The evolution

of peak effective plastic strain is presented in fig.7 and the typical effective plastic strain

profiles are given in fig.9. A,B and C are points on the load-deflection curve which

represent specific states in the specimen's evolution. As the maximum load is reached

(point A in figures 6,7) the maximum effective plastic strain is only 5% of its final value

(at point C). The overall response and the strain history for the various spectral

approximations are almost identical until the high gradients in the strain field start to appear

(point B, figs.6,7). This point indicates the onset of localization, which is characterized by

the steep drop in the load-displacement and effective plastic strain-displacement curves. The

peak strain at point B is still only 20% of its value at point C. From B to C, which is the

interval of strain localization, the displacements increase only by 0.1% , while the

maximum strains in the shear band are multiplied by more than five. Note that as the

number of spectral interpolants is decreased, i.e. as resolution is decreased, the onset of

localization is delayed and the peak strains decrease.

A profile of the effective plastic strain across the width of the spectral overlay (this

direction is normal to the direction of the shear band) is shown in fi,.8. It can be seen that

the strain is extremely localized; the width of the shear band is on the order of 50 microns,
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which corresponds to widths reported in experiments. The width of the shear band depends

on the imperfection, which in this case was 1000 microns wide.

Finally, a comparison between the spectral overlay method ( 1I] and the piecewise

constant enriched strain element [10] is presented. The same material model as in 110] is
eff . eff

utilized with = 0.015) = 300, gre 2 = 0.020) = 320., g(e 3 = 1.50) = 20. and other

material constants and imperfection size as before. In fig9 we compare force-displacement

curves and effective plastic strain profiles obtained using spectral overlay technique with 15

spectral degrees of freedom and the enriched element with 12 piecewise constant

interpolants in each element. As can be seen from fig.9 the results agree quite well, but in

this case the enriched element technique involved far more unknowns. With the spectral

overlay method only 15 additional unknowns were used, while with the enriched strain

element the number of additional unknowns was 12xNENR, where NENR is the number

of enriched elements in the mesh. On the other hand with the enriched element technique

the additional degrees of freedom are eliminated(condensed) on the element level, and also

fewer integration points are needed in the -I-direction.

8. Conclusions

A unified approach in treating finite element solutions with high gradients has been

presented in context of large deformation problems. The-embedded element technique

developed in [7-9], has been modified, so that the enriched and embedded formulations can

be treated simultaneously. The unified approach allows both formulations to be combined

in the same problem. This merging can be performed either on separate domains, or on the

same domain in different directions. For example, in fracture mechanics applications, the

singularity near the crack tip can be effectively treated by an embedded formulation in the

radial direction, especially if the order of singularity is known, while in the circumferential

direction the enriched formulation can be employed. Furthermore, if in some other portions

of the structure of high gradients are indicated by the solution due to localization or
stress/st:rain concentration, an additional enriched or embedded approximation can be

supe-rimposed. These topics combined with adaptive methods are the subject of our further

research.
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